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Abstract

Srinivasa Ramanujan’s contributions to mathematics continue to inspire mathematicians
worldwide. Among his earliest and most elegant discoveries are his formulas involving nested
radicals—expressions where square roots are embedded within square roots, potentially in-
finitely deep. This monograph presents a comprehensive elementary analysis of Ramanujan’s
nested radicals, beginning with fundamental definitions and progressing through convergence
proofs, connections to continued fractions, and applications in calculus.

We derive the general formula for Ramanujan’s nested radicals from first principles using
the binomial theorem, establish convergence criteria using Herschfeld’s theorem, and explore
the beautiful relationship between nested radicals and continued fractions. The document con-
cludes with an examination of the differentiability and integrability of functions defined by
nested radicals.

Keywords: Nested radicals, Ramanujan, continued fractions, golden ratio, convergence, cal-
culus of radicals
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1 Introduction and Historical Context

1.1 Srinivasa Ramanujan: A Brief Biography

Full Name Srinivasa Iyengar Ramanujan
Born December 22, 1887; Erode, Madras Presidency
Died April 26, 1920 (aged 32); Kumbakonam, Madras Presidency
Education Government Arts College; Pachaiyappa’s College
Known for Ramanujan prime, mock theta functions,

Rogers–Ramanujan identities, Ramanujan’s sum

Ramanujan was a self-taught mathematical genius who, despite having almost no formal training
in pure mathematics, made substantial contributions to mathematical analysis, number theory, in-
finite series, and continued fractions. His notebooks, containing nearly 3,900 results, continue to
be a source of research problems for mathematicians today.

1.2 Nested Radicals in Mathematical History
Nested radicals appear throughout the history of mathematics. The ancient Babylonians used iter-
ative methods equivalent to nested radicals for computing square roots. Viète (1593) discovered the
remarkable identity:

2
𝜋 = √2

2 ⋅ √
2 + √2
2 ⋅ √

2 +√2 +√2
2 ⋯ (1)

which expresses 𝜋 as an infinite product of nested radicals.
Ramanujan’s work elevated nested radicals from curiosities to a systematic theory, revealing

deep connections to continued fractions, special functions, and algebraic number theory.

2 Fundamentals of Nested Radicals

2.1 Definitions and Notation
Definition 2.1 (Nested Radical). A nested radical is an expression of the form

√√√
√𝑥1 + 𝑥2√𝑥3 + 𝑥4√𝑥5 + 𝑥6√𝑥7 + 𝑥8√⋯ (2)

where 𝑥𝑖 ∈ ℝ for all 𝑖 ∈ ℕ.

The nesting can be finite or infinite:

• A finite nested radical has a definite number of radical signs, such as√1+√2 +√3 +√4.

• An infinite nested radical extends indefinitely, such as√1+√2 +√3 +√4 +⋯.

Definition 2.2 (Depth of Nesting). The depth of a finite nested radical is the number of radical
signs it contains. The depth of an infinite nested radical is∞.
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Remark 2.1. While we focus primarily on square roots, nested radicals can involve roots of any
degree. For example,

4
√5+ 3√11 + √23 (3)

is a nested radical with mixed degrees. Such expressions arise naturally in the theory of solvability
of polynomial equations by radicals.

2.2 Denesting: Simplifying Nested Radicals
Definition 2.3 (Denesting). The process of reducing the depth of a nested radical is called denest-
ing. A nested radical is denestable if it can be expressed using radicals of smaller depth.

Example 2.1. The expression√3+ 2√2 can be denested:

√3+ 2√2 = 1 + √2 (4)

This can be verified by squaring: (1 + √2)2 = 1 + 2√2 + 2 = 3 + 2√2.

2.2.1 Denesting Two-Level Radicals

Consider a nested radical of the form√𝑎+√𝑏 where 𝑎, 𝑏 ∈ ℚ. We seek to express it as √𝑑 + √𝑒
where 𝑑, 𝑒 ∈ ℚ.

Theorem 2.1 (Two-Level Denesting). Let 𝑎, 𝑏 ∈ ℚ with 𝑏 > 0. If there exist 𝑑, 𝑒 ∈ ℚ such that

√𝑎+√𝑏 = √𝑑 + √𝑒 (5)

then 𝑑 and 𝑒 satisfy:

𝑑 + 𝑒 = 𝑎 (6)
4𝑑𝑒 = 𝑏 (7)

Proof. Squaring both sides of the assumed equality:

𝑎 + √𝑏 = 𝑑 + 𝑒 + 2√𝑑𝑒 (8)

Equating rational and irrational parts yields equations (6) and (7).

From these equations, we obtain the quadratic:

4𝑒2 − 4𝑎𝑒 + 𝑏 = 0 (9)

with solutions:

𝑒 = 𝑎 ± √𝑎2 − 𝑏
2 (10)

Denesting Criterion: The radical √𝑎+√𝑏 is denestable over ℚ if and only if 𝑎2 − 𝑏 is a
perfect square in ℚ.

Example 2.2. To denest√5+ 2√6:
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• Here 𝑎 = 5 and 𝑏 = 24 (since 2√6 = √24).

• Check: 𝑎2 − 𝑏 = 25 − 24 = 1, which is a perfect square.

• Solving: 𝑒 = 5±1
2
, giving 𝑒 = 3 or 𝑒 = 2.

• Therefore: √5+ 2√6 = √2 + √3.

2.2.2 Denesting Three-Level Radicals

For√𝑎+√𝑏 +√𝑐, we seek√𝑓 +√𝑔 +√ℎ. This leads to a more complex system:

𝑎 = 𝑓 + 𝑔 (11)
𝑏 = ℎ + 4𝑓𝑔 (12)

𝑐 = 16𝑓2𝑔ℎ + 16𝑓𝑔2ℎ + 16𝑓𝑔ℎ2 + 32𝑓2𝑔√ℎ + ℎ2√ℎ (13)

The algebraic complexity grows rapidly with depth. Susan Landau developed algorithms for
denesting such expressions, which fall under the domain of computational algebra.

3 Ramanujan’s General Formula for Nested Radicals

3.1 Derivation from the Binomial Theorem
We now derive Ramanujan’s fundamental formula for nested radicals, starting from the elementary
binomial expansion.

Theorem 3.1 (Ramanujan’s Nested Radical Identity). For all 𝑥, 𝑛, 𝑎 ∈ ℝ with appropriate sign
conditions:

𝑥 + 𝑛+ 𝑎 = √𝑎𝑥 + (𝑛 + 𝑎)2 + 𝑥√𝑎(𝑥 + 𝑛) + (𝑛 + 𝑎)2 + (𝑥 + 𝑛)√𝑎(𝑥 + 2𝑛) + (𝑛 + 𝑎)2 +⋯ (14)

Proof. We proceed by constructing a telescoping pattern.
Step 1: Begin with the algebraic identity

(𝑎 + 𝑏)2 = 𝑎2 + 2𝑎𝑏 + 𝑏2 (15)

Substituting 𝑏 = 𝑛 + 𝑎:

(𝑥 + 𝑛 + 𝑎)2 = 𝑥2 + 2𝑥(𝑛 + 𝑎) + (𝑛 + 𝑎)2 (16)

Rearranging:
(𝑥 + 𝑛 + 𝑎)2 = 𝑥2 + (𝑛 + 𝑎)2 + 𝑥(2𝑛 + 2𝑎) (17)

Factor the last term:

(𝑥 + 𝑛 + 𝑎)2 = 𝑥2 + (𝑛 + 𝑎)2 + 𝑥 ⋅ 2(𝑛 + 𝑎) (18)

Rewrite using 𝑎𝑥 + 𝑥 ⋅ 2𝑛 + 𝑥𝑎 = 𝑥(𝑎 + 2𝑛 + 𝑎) = 𝑥(2𝑛 + 2𝑎):

(𝑥 + 𝑛 + 𝑎)2 = 𝑎𝑥 + (𝑛 + 𝑎)2 + 𝑥(𝑥 + 2𝑛 + 𝑎) (19)
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Step 2: Taking the positive square root of (19):

𝑥 + 𝑛 + 𝑎 = √𝑎𝑥 + (𝑛 + 𝑎)2 + 𝑥(𝑥 + 2𝑛 + 𝑎) (20)
Step 3: Replace 𝑥 with 𝑥 + 𝑛 in (20):

𝑥 + 2𝑛 + 𝑎 = √𝑎(𝑥 + 𝑛) + (𝑛 + 𝑎)2 + (𝑥 + 𝑛)(𝑥 + 3𝑛 + 𝑎) (21)
Step 4: Substitute (21) into (20):

𝑥 + 𝑛 + 𝑎 = √𝑎𝑥 + (𝑛 + 𝑎)2 + 𝑥√𝑎(𝑥 + 𝑛) + (𝑛 + 𝑎)2 + (𝑥 + 𝑛)(𝑥 + 3𝑛 + 𝑎) (22)
Continuing this process inductively:

𝑥 + 𝑘𝑛 + 𝑎 = √𝑎(𝑥 + (𝑘 − 1)𝑛) + (𝑛 + 𝑎)2 + (𝑥 + (𝑘 − 1)𝑛)(𝑥 + (𝑘 + 1)𝑛 + 𝑎) (23)
This generates the infinite nested radical in (14).

3.2 The General 𝑘-Term Formula
For finite 𝑘, the nested radical takes the explicit form:

𝑥 + 𝑛 + 𝑎 = √𝑎𝑥 + (𝑛 + 𝑎)2 + 𝑥√𝑎(𝑥 + 𝑛) + (𝑛 + 𝑎)2 + (𝑥 + 𝑛)√⋯+ (𝑥 + (𝑘 − 2)𝑛)√𝑅𝑘
(24)

where the innermost term is:

𝑅𝑘 = 𝑎(𝑥 + (𝑘 − 1)𝑛) + (𝑛 + 𝑎)2 + (𝑥 + (𝑘 − 1)𝑛)(𝑥 + (𝑘 + 1)𝑛 + 𝑎) (25)

4 Special Cases and Notable Identities

4.1 The Identity for 3
Setting 𝑥 = 𝑛 = 𝑎 = 1 in Ramanujan’s formula:
Theorem 4.1.

3 =
√√√
√1+ 2√1 + 3√1 + 4√1 + 5√⋯ (26)

Proof. With 𝑥 = 𝑛 = 𝑎 = 1:
• Left side: 𝑥 + 𝑛 + 𝑎 = 1 + 1 + 1 = 3
• First term: 𝑎𝑥 + (𝑛 + 𝑎)2 = 1 ⋅ 1 + (1 + 1)2 = 1 + 4 = 5
• Second term coefficient: 𝑥 = 1
• Under second radical: 𝑎(𝑥 + 𝑛) + (𝑛 + 𝑎)2 = 1 ⋅ 2 + 4 = 6, with coefficient 𝑥 + 𝑛 = 2
• Pattern continues: coefficients are 1, 2, 3, 4,… and inner terms are 5, 6, 7, 8,…

An equivalent form, derived by adjusting parameters:

𝑥 + 1 =
√√√
√1+ 𝑥√1 + (𝑥 + 1)√1 + (𝑥 + 2)√1 + (𝑥 + 3)√⋯ (27)

Setting 𝑥 = 2 recovers the formula for 3.
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4.2 The Trivial Case: 𝑛 = 𝑎 = 0
When 𝑛 = 0 = 𝑎 with 𝑥 ≠ 0:

𝑥 = √𝑥√𝑥√𝑥√⋯ (28)

This infinite nested radical equals 𝑥 itself. To see why:

√𝑥 ⋅√𝑥 ⋅ √𝑥⋯ = 𝑥1/2 ⋅ 𝑥1/4 ⋅ 𝑥1/8⋯ = 𝑥1/2+1/4+1/8+⋯ = 𝑥1 = 𝑥 (29)

More generally:

√𝑥√𝑥√𝑥⋯√𝑥⏟⎵⎵⎵⎵⏟⎵⎵⎵⎵⏟
𝑘 radicals

= 𝑥1−2−𝑘 (30)

As 𝑘 → ∞, this approaches 𝑥.

4.3 Nested Radicals for Cube of Integers
Setting 𝑥 = 𝑎 = 𝑛 yields:

3𝑛 = √𝑛2 + 4𝑛2 + 𝑛√4𝑛2 + 4𝑛2 + 2𝑛√9𝑛2 + 4𝑛2 + 3𝑛√⋯ (31)

Simplifying:

3𝑛 = √5𝑛2 + 𝑛√8𝑛2 + 2𝑛√13𝑛2 + 3𝑛√⋯ (32)

5 The Constant-Coefficient Case: Golden Ratio and Beyond

5.1 Nested Radicals of Type√𝑎+√𝑎 +√𝑎 +⋯

Consider the simplest infinite nested radical where all coefficients equal 𝑎:

𝐿 = √𝑎 +√𝑎 +√𝑎 +√⋯ (33)

Theorem 5.1. For 𝑎 ≥ 0, the infinite nested radical√𝑎+√𝑎 +√𝑎 +⋯ converges to:

𝐿 = 1 + √1 + 4𝑎
2 (34)

Proof. Assuming convergence to 𝐿, we have:

𝐿 = √𝑎 + 𝐿 (35)

Squaring: 𝐿2 = 𝑎 + 𝐿, which gives 𝐿2 − 𝐿 − 𝑎 = 0.
By the quadratic formula:

𝐿 = 1 ± √1 + 4𝑎
2 (36)

Since 𝐿must be positive (as a limit of positive terms), we take the positive root.
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5.2 The Golden Ratio
The most celebrated special case occurs when 𝑎 = 1:

√1+√1 +√1 +√1 +⋯ = 𝜑 = 1 + √5
2 ≈ 1.6180339887… (37)

where 𝜑 is the golden ratio.

The golden ratio satisfies 𝜑2 = 𝜑 + 1, which is precisely the equation we derived.

5.3 Connection to the Plastic Constant
For cubic nested radicals of the form:

𝑃 =
3
√1+ 3√1+ 3√1 +⋯ (38)

The limit satisfies 𝑃3 = 1 + 𝑃, giving:

𝑃 = 1
3 (1 +

3

√
29 + 3√93

2 + 3

√
29 − 3√93

2 ) ≈ 1.3247179572… (39)

This is the plastic constant, which appears in architecture and number theory.

6 Convergence Theory

6.1 Herschfeld’s Theorem
The convergence of infinite nested radicals is governed by a beautiful theorem due to Aaron Her-
schfeld (1935).

Theorem 6.1 (Herschfeld’s Theorem). The infinite nested radical

√𝑎1 +√𝑎2 +√𝑎3 +√𝑎4 +⋯ (40)

with 𝑎𝑛 ≥ 0 for all 𝑛 converges if and only if

lim sup
𝑛→∞

𝑎2−𝑛𝑛 < ∞ (41)

Corollary 6.2. If 𝑎𝑛 = 𝑂(𝑛𝑘) for some constant 𝑘, then the nested radical converges.

Proof. For polynomial growth, 𝑎𝑛 ≤ 𝐶𝑛𝑘 for some 𝐶 > 0. Then:

𝑎2−𝑛𝑛 ≤ (𝐶𝑛𝑘)2−𝑛 = 𝐶2−𝑛 ⋅ 𝑛𝑘⋅2−𝑛 (42)

As 𝑛 → ∞: 𝐶2−𝑛 → 1 and 𝑛𝑘⋅2−𝑛 → 1. Thus lim sup 𝑎2−𝑛𝑛 ≤ 1 < ∞.

Example 6.1. The nested radical√1+√2 +√3 +√4 +⋯ converges because 𝑎𝑛 = 𝑛 satisfies
Herschfeld’s condition.
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6.2 Convergence of 𝑛-th Degree Nested Radicals
For nested radicals involving 𝑛-th roots:

𝐿 =
𝑛
√𝑎+ 𝑛√𝑎+ 𝑛√𝑎 +⋯ (43)

Theorem 6.3. The 𝑛-th degree constant nested radical converges to the unique positive root of:

𝐿𝑛 − 𝐿 − 𝑎 = 0 (44)

When 𝑛 = 2, this reduces to 𝐿2 − 𝐿 − 𝑎 = 0, confirming our earlier result.

7 Nested Radicals and Continued Fractions

7.1 A Remarkable Equivalence
There exists a profound connection between nested radicals and continued fractions.

Theorem 7.1 (Nested Radical–Continued Fraction Duality). For 𝑎, 𝑏 ≥ 0:

√𝑎+ 𝑏√𝑎 + 𝑏√𝑎 + 𝑏√⋯ = 𝑎 +
𝑏

𝑎 +
𝑏

𝑎 +
𝑏

𝑎 +⋯

(45)

Both expressions equal:
𝑎 + √𝑎2 + 4𝑏

2 (46)

Proof. Let 𝐿 denote the nested radical. Then 𝐿 = √𝑎 + 𝑏𝐿, giving 𝐿2 = 𝑎 + 𝑏𝐿, hence:

𝐿 = 𝑏 + √𝑏2 + 4𝑎
2 (47)

Let 𝐶 denote the continued fraction. Then 𝐶 = 𝑎 + 𝑏
𝐶
, giving 𝐶2 = 𝑎𝐶 + 𝑏, hence:

𝐶 = 𝑎 + √𝑎2 + 4𝑏
2 (48)

Interchanging 𝑎 and 𝑏 in the nested radical formula yields the continued fraction formula. Both
equal 𝑎+√𝑎

2+4𝑏
2

when the parameters are appropriately matched.

7.2 The Golden Ratio Connection
Setting 𝑎 = 𝑏 = 1:

√1+√1 +√1 +⋯ = 1 +
1

1 +
1

1 +
1
⋱

= 1 + √5
2 = 𝜑 (49)

This demonstrates that the golden ratio can be represented both as an infinite nested radical and
as the simplest infinite continued fraction [1; 1, 1, 1,…].
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8 Ramanujan’s Ultimate Nested Radical Formula
Ramanujan discovered another elegant formula expressing sums as nested radicals.

Theorem 8.1 (Ramanujan’s Sum Formula). For any 𝑥, 𝑎 ∈ ℝ:

𝑥 + 𝑎 =
√√√
√𝑎2 + 𝑥√𝑎2 + (𝑥 + 𝑎)√𝑎2 + (𝑥 + 2𝑎)√𝑎2 + (𝑥 + 3𝑎)√⋯ (50)

Proof. Starting from:
(𝑥 + 𝑎)2 = 𝑥2 + 𝑎2 + 2𝑎𝑥 (51)

Rearranging:
(𝑥 + 𝑎)2 = 𝑎2 + 𝑥(𝑥 + 2𝑎) (52)

Taking square roots:
𝑥 + 𝑎 = √𝑎2 + 𝑥(𝑥 + 2𝑎) (53)

Replacing 𝑥 by 𝑥 + 𝑎 in (53):

𝑥 + 2𝑎 = √𝑎2 + (𝑥 + 𝑎)(𝑥 + 3𝑎) (54)

Substituting back and continuing inductively yields the infinite nested radical.

8.1 Generalizing to 𝑛 Terms

𝑥 + 𝑎 =

√√√
√𝑎2 + 𝑥√𝑎2 + (𝑥 + 𝑎)√𝑎2 + (𝑥 + 2𝑎)√⋯√𝑎2 + (𝑥 + 𝑛𝑎)(𝑥 + (𝑛 + 1)𝑎) (55)

9 Ramanujan’s Wild Theorem
In his famous letter to G.H. Hardy on January 16, 1913, Ramanujan included this remarkable iden-
tity:

Ramanujan’s Wild Theorem:

1

1 +
𝑒−2𝜋

1 +
𝑒−4𝜋

1 +
𝑒−6𝜋
1+ ⋱

= (√
5 +√5

2 − √5 + 1
2 ) 5√𝑒2𝜋 (56)

This identity connects an infinite continued fraction with exponential terms to a finite expres-
sion involving the golden ratio and fifth roots. Hardy was initially skeptical but eventually verified
it.

The right-hand side can be simplified:

√
5+√5

2 − √5 + 1
2 = √

5 +√5
2 − 𝜑 (57)

This theoremexemplifies Ramanujan’s extraordinary ability to discover unexpected connections
between seemingly unrelated mathematical objects.

11
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10 Derived Identities

10.1 Algebraic Identities from Nested Radicals
From our convergence formula:

√𝑎+ 𝑏√𝑎 + 𝑏√𝑎 +⋯ = 𝑏 + √𝑏2 + 4𝑎
2 (58)

We can derive:

𝑏 + √𝑏2 + 4𝑎
2 = 𝑏1/2 ⋅ (𝑏 ⋅ 𝑏1/2 ⋅ (𝑏 ⋅ 𝑏1/2 ⋅ (𝑏 ⋅ 𝑏1/2⋯)1/2)1/2)1/2 (59)

Setting 𝑏 = 𝑎2:

𝑎2 +√𝑎4 + 4𝑎
2 = 𝑎 ⋅√𝑎2 ⋅ √𝑎2 ⋅ √𝑎2 ⋅ √⋯ (60)

10.2 The Identity for√2
Setting 𝑏 = 2 and 𝑎 = 1/4 appropriately:

2 = √2 +√2 +√2 +√2 +⋯ (61)

Wait—this isn’t quite right. Let’s derive it properly.
For 𝑎 = 2:

𝐿 = √2 +√2 +√2 +⋯ ⟹ 𝐿2 = 2 + 𝐿 ⟹ 𝐿 = 2 (62)

√2+√2 +√2 +√2 +⋯ = 2 (63)

This can also be written as:

√2 = √2 −√2 +√2 +√2 +⋯ (64)

More generally:

2 cos ( 𝜋2𝑛 ) = √2 +√2 +√2 +⋯+√2⏟⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⏟
𝑛−1 nested radicals

(65)

As 𝑛 → ∞, cos(𝜋/2𝑛) → 1, confirming our limit of 2.

11 Calculus of Nested Radicals

11.1 Functions Defined by Nested Radicals
Define the sequence of functions:

𝑓0(𝑥) = 𝑘 (constant) (66)

𝑓𝑛+1(𝑥) = √𝑥 + 𝑓𝑛(𝑥) (67)

12
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Explicitly:

𝑓1(𝑥) = √𝑥 + 𝑘 (68)

𝑓2(𝑥) = √𝑥 +√𝑥 + 𝑘 (69)

𝑓3(𝑥) = √𝑥 +√𝑥 +√𝑥 + 𝑘 (70)
⋮ (71)

𝑓𝑛(𝑥) = √𝑥 +√𝑥 +⋯+√𝑥 + 𝑘⏟⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⏟
𝑛 radicals

(72)

11.2 Differentiability
Theorem 11.1. For 𝑥 > 0 and 𝑘 ≥ 0, each 𝑓𝑛(𝑥) is differentiable, and:

𝑓′𝑛(𝑥) =
1

2𝑓𝑛(𝑥)
(1 + 𝑓′𝑛−1(𝑥)) (73)

with 𝑓′0(𝑥) = 0.

Proof. By the chain rule:

𝑓′𝑛+1(𝑥) =
𝑑
𝑑𝑥√𝑥 + 𝑓𝑛(𝑥) =

1 + 𝑓′𝑛(𝑥)
2√𝑥 + 𝑓𝑛(𝑥)

= 1 + 𝑓′𝑛(𝑥)
2𝑓𝑛+1(𝑥)

(74)

Computing the first few derivatives:

𝑓′1(𝑥) =
1

2√𝑥 + 𝑘
= 1
2𝑓1(𝑥)

(75)

𝑓′2(𝑥) =
1

2𝑓2(𝑥)
(1 + 1

2𝑓1(𝑥)
) (76)

𝑓′3(𝑥) =
1

2𝑓3(𝑥)
(1 + 1

2𝑓2(𝑥)
(1 + 1

2𝑓1(𝑥)
)) (77)

This generates a beautiful nested structure in the derivatives themselves!

General Formula:

𝑓′𝑛(𝑥) =
1
2𝑓𝑛

(1 + 1
2𝑓𝑛−1

(1 + 1
2𝑓𝑛−2

(1 +⋯+ 1
2𝑓1

))) (78)

11.3 Integration
The antiderivatives of 𝑓𝑛(𝑥) become increasingly complex.

Theorem 11.2. ∫𝑓1(𝑥) 𝑑𝑥 =
2
3
(𝑥 + 𝑘)3/2 + 𝐶
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Proof. Direct integration:
∫√𝑥 + 𝑘𝑑𝑥 = 2

3(𝑥 + 𝑘)3/2 + 𝐶 (79)

For 𝑓2(𝑥) = √𝑥 +√𝑥 + 𝑘, the integral is considerably more complex. Setting 𝑘 = 1:

∫√𝑥 +√𝑥 + 1𝑑𝑥 = 1
12√𝑥 +√𝑥 + 1 (2(𝑥 + √𝑥 + 1) + 6√𝑥 + 1 + 2𝑥 − 11) + 𝐶′ (80)

where 𝐶′ involves logarithmic terms.
For 𝑛 ≥ 3, closed-form antiderivatives in terms of elementary functions are generally not avail-

able, though the functions remain integrable over any bounded interval.

12 Open Problems and Further Directions

12.1 Algebraic Independence

1. Is√1+√2 +√3 +√4 +⋯ algebraic or transcendental?

2. What is the exact value of√1+√2 +√3 +√4 +⋯?

Numerical computation gives approximately 1.7579327566…, but no closed form is known.

12.2 Generalized Nested Radicals

1. Study of 𝑛
√𝑎1 + 𝑛√𝑎2 + 𝑛√𝑎3 +⋯ for 𝑛 > 2.

2. Mixed-degree nested radicals.

3. Complex-valued nested radicals.

12.3 Connections to Modular Forms
Ramanujan’s wild theorem suggests deep connections between nested radicals and modular forms.
This remains an active area of research.

13 Conclusion
Ramanujan’s work on nested radicals demonstrates his remarkable ability to find patterns and con-
nections in mathematics. From a simple binomial expansion, he constructed an elegant theory
relating nested radicals to continued fractions, the golden ratio, and ultimately to modular forms
and 𝑞-series.

The key results of this monograph include:

1. Ramanujan’s General Formula: 𝑥 + 𝑛 + 𝑎 can be expressed as an infinite nested radical.

2. Convergence: Constant-coefficient nested radicals√𝑎+√𝑎 +⋯ converge to (1+√1 + 4𝑎)/2.
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3. Duality: Nested radicals and continued fractions are intimately connected, both yielding the
same algebraic expressions.

4. Special Values: The golden ratio 𝜑 = (1 + √5)/2 arises as the simplest non-trivial nested
radical.

5. Calculus: Functions defined by nested radicals are differentiable and integrable, with deriva-
tives exhibiting their own nested structure.

The theory of nested radicals continues to yield surprises, connecting elementary algebra to deep
areas of number theory and analysis.
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A Numerical Values

Expression Approximate Value

√1+√1 +√1 +⋯ 1.6180339887… (golden ratio)

√2+√2 +√2 +⋯ 2.0000000000…

√1 +√2 +√3 +√4 +⋯ 1.7579327566…

√1 + 2√1 + 3√1 + 4√⋯ 3.0000000000…

3
√1+ 3√1+ 3√1 +⋯ 1.3247179572… (plastic constant)

Table 1: Numerical values of selected nested radicals

B Viète’s Formula
François Viète discovered in 1593:

2
𝜋 = √2

2 ⋅ √
2 + √2
2 ⋅ √

2 +√2 +√2
2 ⋯ (81)

This can be written as:
2
𝜋 =

∞
∏
𝑛=1

𝑎𝑛
2 (82)

where 𝑎1 = √2 and 𝑎𝑛+1 = √2 + 𝑎𝑛.
Since 𝑎𝑛 = 2 cos(𝜋/2𝑛+1), we have:

2
𝜋 =

∞
∏
𝑛=1

cos ( 𝜋
2𝑛+1 ) (83)

This beautiful identity connects nested radicals to 𝜋, predating Ramanujan by over 300 years.
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