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Arrangements

Distribution

(1)

0 – 4 {a,b,c,d} 1

Distribution

(2)

1 {a} 3 {b,c,d} 4

Macrostates and Microstates and their relations

with Thermodynamic Probability

In this article we will de�ne what are Macrostates and Microstates in Statistical Physics

with examples and illustrations.

Consider some (4, say) distinguishable particles. If we wish to distribute them into two

exactly similar compartments in an open box, then the priori probability for a particle of

going into any one of the compartments will be exactly 1/2 as both compartments are

identical. If the four particles are named as a , b, c and d and the compartments as

compartment (1) and compartment (2), then the following table can be made listing all

the possible arrangements.
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(3)

2 {a,b} 2 {c,d} 6
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3 {b,c,d} 1 {a} 4
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Distribution

(5)

4 {a,b,c,d} 0 – 1

 

{d,a,b}

 

{a,b,c}

 

{c}

 

{d}

 [Download this table in PDF for better view.]

Now in the second distribution, only one particle is chosen to be inside compartment (1)

and all others in Compartment (2). There are exactly  = 4 ways to do so. All four

arrangements are shown in the table above.
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Similarly, in the distribution (3) exactly two particles enter in each of the compartment (1)

and (2) , i.e., if  and  are placed in the compartment (1),  and  must take place in

Compartment (2).

a b c d

There are exactly =6 ways to do so. Following the same procedure to complete

table by increasing the number of particles one by one in Compartment (1) and

decreasing them one by one in Compartment (2).
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We have following 5 di�erent distributions for the system of four particles:

Distribution (1) =  = (0,4) 

Distribution (2) =  = (1,3) 

Distribution (3) =  = (2,2) 

Distribution (4) =  = (3,1) 

Distribution (5) =  = (4,0)
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These compartment-wise distributions of a system of particles are known as

macrostates of the system. There are �ve macrostates observed corresponding to a

system of four particles. In general, for a system of n particles, there are exactly 

macrostates (for the system of n particles to be distributed in two identical

compartments). These macrostates are the following distribution of particles:

n+ 1

 

 

 

 

.

= (0,n)d

1

= (1,n− 1)d

2

= (2,n− 2)d

3

…

= (k− 1,n− k+ 1)d

k

…

= (n, 0)d

n+1

Now, the di�erent possible arrangements for each macrostate are in their own ‘a

distribution’, called microstates.

For example {{a}, {b,c,d}} is a microstate of macrostate  (distribution 2) in the table of

system of four particles. From the table, it can be observed that a macrostate may have

many corresponding microstates.
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The distribution  has one microstate {{ }{a,b,c,d}}, while the distribution 

 has four,  has six ,  has four and  has one.
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The total number of microstates for the system of four particles is, therefore, 

.1 + 4+ 6+ 4+ 1 = 16 = 2

4

In general, the total number of microstates for the system of n-particles in ‘two

compartment’ composition is . And also, the number of microstates corresponding to

a single macrostate with  distribution among  particles is .

2

n

(r,n− r) n ( )

n

r



Thermodynamic Probability

In statistical physics, the number of microstates plays very important role at quantum

level. The number of microstates corresponding to any macrostate is called the

thermodynamic probability of the macrostate, represented by  or .W Ω

Since, for the macrostate  the number of microstates is

. Thus, the thermodynamic probability of this macrostate:
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In mathematics, we know that
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That is, for a system of four distinguishable particles, , , providedn = 4 r = 0, 1, 2, 3, 4
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All agree with the table.

Thermodynamic probability is not identical to ‘probability’ in mathematics and statistics,

but it gives rise to that.

Probability of a Macrostate

The probability of macrostate (i.e., availability of a macrostate) in a system is given by
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Practically, the probability of �nding the macrostate (0,4) in a system of four particles is
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Similarly, .=P

(1,3)

1

4

Macrostate with highest probability

The macrostate (r, n-r) has the highest probability only if

and

. Then the highest probability is given by:

r =  when n is even
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Macrostate with least probability

The macrostate (r, n-r) is least probable when  is either zero or n.r
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Thus, least probability for a macrostate is . 
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□



Original: https://gauravtiwari.org/statistical-physics-macrostates-microstates/

Remark: The probability of a macrostate (P) is directly proportional

to the thermodynamic probability (W).


