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ABSTRACT: As is well-known, the celebrated Riemann Hypothesis (RH) is the prediction that all the non-trivial

zeros of the zeta function ζ(s) lie on a vertical line in the complex s-plane at Re(s) = 1/2. Very many efforts to prove

this statement have been directed to investigating the analytic properties of the zeta function, however all these efforts

have not been able to substantially improve on Riemann’s initial discovery: that all the non trivial zeros lie in verical

strip of unit width whose centre is the critical line. The efforts have been rendered difficult because of a lack of a

suitable functional representation (formula) for ζ(s) (or 1/ζ(s)) , which is valid and analytic over all regions of the

Argand plane; these difficulties are further complicated by the presence of prime numbers in the very definition of the

zeta function and the lack of predictability in the behaviour of prime numbers which makes the analysis intractable. In

this paper we make our first headway by looking at the analyticity of the function F (s) = ζ(2s)/ζ(s) that has poles in

exactly those positions where ζ(s) has a non trivial zero. Further, the trivial zeros of the zeta function, which occur at

the negative even integers, conveniently cancel out in F (s) and do not appear as poles of the latter (however there is an

isolated pole of F (s), viz. s = 1/2, which is actually a pole of ζ(2s) but this will not worry us because it is on the

critical line). So the task of proving the RH is some what ‘simplified’ because all we have to show is: All the poles of

F (s) occur on the critical line, which then is the main aim of this paper. We then investigate the Dirichlet series that

obtains from the function F(s) and employ novel methods of summing the series by casting it as an infinite number of

sums over sub-series. In this procedure, which heavily invokes the prime factorization theorem, each sub-series has the

property that it oscillates in a predictable fashion, rendering the analytic properties of the function F (s) determinable.

With the methods developed in the paper many theorems are proved, for example we prove: that for every integer with

an even number of primes in its factorization, there is another integer that has an odd number of primes (multiplicity

counted) in its factorization; by this demonstration, and by the proof of several other theorems, a similarity between

the factorization sequence involving (Liouville’s multiplicative functions) and a sequence of coin tosses is

mathematically established. Consequently, by placing this similarity on a firm foundation, one is then empowered to

demonstrate, that Littlewood’s(1912) sufficiency condition involving Liouville’s summatory function, L(N), is satisfied.

It is thus proved that the function F (s) is analytic over the two half-planes Re(s) > 1/2 and Re(s) < 1/2, clearly

revealing that all the nontrivial zeros of the Riemann zeta function are placed on the critical line Re(s) = 1/2.

Extended Abstract

The paper approaches∗ the RH in the following way:

(1) This proof of the Riemann Hypothesis (Riemann 1859) crucially depends on showing that the function
F (s) ≡ ζ(2s)/ζ(s), has poles only on the critical line s = 1/2 + iy, which translates to having the non-trivial
zeros of the ζ(s) function on the self-same critical line. It can be easily verified that all the non-trivial zeros of
ζ(s) appear as poles in F (s), and all the trivial zeros cancel and so do not appear as poles in F (s)†. It can also
be proved, from symmetry considerations, that both the numerator and denominator of F (s) cannot vanish at
the same point. Hence, to prove the RH, all we need to show is that all the poles of F (s) occur on the critical line.

(2) A method applied by Littlewood (1912, see Edwards (1974) pp 260) to obtain an equivalent statement
of RH involving the 1/ζ(s) function is applied here to F (s) to obtain a previously-known equivalent statement of

Received 9 MAY 2018
Communicated by XXX
∗This paper is the Final Version of the proof on RH, the earlier versions bear the title ‘The Dirichlet Series for
the Liouville Function and the Riemann Hypothesis’ Sept 2016 to Oct 2017) are listed in Ref. [8] K. Eswaran
†except that the latter has an extra pole on the critical line

c© The Author MAY 2018. ResearchGate. All rights reserved contact Author for permissions,

please e-mail: journals.permissions@oxfordjournals.org.
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uncertain provenance. Littlewood’s method lies in analytically continuing the Dirichlet series for F (s), strictly
valid for Re(s) > 1, to the region Re(s) ≤ 1. The analyticity of F (s) turns out to be crucially dependent on the
boundedness of L(N)N−s as N →∞, where L(N) is the summatory Liouville function. That is, if L(N) ∼ Na

(a > 0) asymptotically as N →∞, then the F (s) can be analytically continued only on the right of the vertical
line drawn at Re(s) = a. In other words, the singularities of F(s) will lie on or to the left of Re(s) = a. Further,
since the non-trivial zeros of the Riemann zeta function ζ(s) exactly correspond to the poles of F(s), and are
known to be symmetrically placed about the Re(s) = 1/2 line, this automatically implies that the non-trivial
zeros of the zeta function will all be within the region 1− a ≤ Re(s) ≤ a. If a→ 1/2 from the right, the zeros

will lie on the critical line and RH will be true. This also means that L(N) ∼ N 1
2 as N →∞, thereby yielding

the RH-equivalent statement (see Borwein et al 2006, p. 48):

limN→∞
L(N)

N
1
2 +ε

= 0 for ε > 0

Here L(N) =
∑N

1
λ(n), and λ(n) is the Liouville function that is +1 or -1 depending on whether n has an even

or odd number of prime factors (multiplicity included).

(3) The equivalent statement above requires, if the RH is true, that |L(N)| ∼ N 1
2 as N →∞ (a < 1/2 is

impossible as the Re(s) = 1/2 line is known to have numerous zeros of the the zeta function). This expression
is strongly suggestive of X(N), the distance travelled in N unit steps in a standard random walk, which can be
represented as:

X(N) =

N∑
n=1

c(n)

where the c(n)’s are “coin-tosses”, i.e., independent random numbers with an equal probability of being either
+1 or -1. It is well-known that the expected value of |X(N)|, for large N , is

limN→∞E(|X(N)|) = C0N
1/2

Therefore, if it could be shown that the L(N) series is a random-walk, and that |L(N)| ∼ N 1
2 as N →∞, the

RH would be proved. This is the approach taken here. So we have to prove that the λ(n)’s in the L(N) series
are essentially “coin-tosses”, for large n.

To show that the λ’s behave as coin tosses, we have to show that (i) their probabilities of being either +1
of -1 are equal, and further (ii) that the λ’s appearing in the natural sequence, n = 1, 2, 3, ..., are independent
of each other.

(4) Equal Probabilities: A crucial advance in this line of attack is the discovery of a method of factorizing
every integer and placing it in an exclusive subset, where it and its other members in the same subset form
an increasing sequence of natural numbers that alternately have odd and even numbers of prime factors. Such
subsets are called ‘Towers’ in the Paper. It is shown that every natural number, other than 1, has a unique place
in a unique Tower of ordered countably infinite members, and each such member represents a unique natural
number. The alternating odd and even factorization of the members of the Towers ensures that each Tower is
partitioned into equal proportions of members with λ’s of -1 and +1. As the entire natural number system is
incorporated within the Towers system, the natural numbers also have equal proportions with odd and even
numbers of prime factors, respectively with λ’s of -1 and +1. In other words, concerning the probability that
a random natural number n has a λ of either value, we conclude: Prob[λ(n) = +1] = Prob[λ(n) = −1] = 1/2
[Theorem 3B]‡.

(5) Non-periodicity and Independence: We then show that the sequence of λ’s in L(N) can never be cyclic,
just as a sequence of coin tosses can never be cyclic. This done in Appendix III and follows directly from
Littlewood’s method. Quasi-cyclicity or any other pattern of λ’s in the L(N) series that would keep L(N)
bounded as N →∞ are also excluded. Specifically, non-cyclicity would preclude any dependence of the type

λn = f(λn−1, λn−2, λn−3, ..., λn−M )

‡Theorems 3 and 3B, that argue for equal proportions and hence equal probabilities of the the λ’s over the natural number system,
were later given a new and different proof in K. Eswaran, (April 2018)
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for finite M . So, essentially, the independence of λ’s in the natural sequence is proved [although within the
Towers, they have a perfectly predictable and deterministic relation]. Here we adopt the notation: λn for λ(n).

(6) Arithmetic Independence: The independence of the λ’s in the L(N) series mentioned above followed
from Littlewood’s method, i.e., Analysis. In Appendix IV, a purely arithmetic approach is taken. It is shown
that from merely these two rules: λ(p) = −1 for a prime p, and λ(pq) = λ(p)× λ(q), where q is any integer, the
entire sequence of λ’s for n = 1, 2, 3, ..., can be obtained, in a manner reminiscent of the construction of the
natural number system by multiplication. It is then argued that for any two integers n > m, λ(n) is dependent
on λ(m), if the latter is required to find the former, and independent if not. It is then shown that, as n→∞,
any finite sequential strip of λ’s will be independent of each other, thus essentially making them equivalent to
coin-tosses.

(7) With Theorem 3B and Appendices III and IV, we have proved that the L(N) series is a random walk
of infinite length. We then invoke (towards the end of Section 5) Khinchin and Kolmogorov’s law of the iterated
logarithm to show that the maximum deviation, from the one-half power-law expectation, in the exponent of
|X(N)| for any individual random walk tends monotonically to zero as N →∞. So, in fact, |L(N)| ∼ N 1

2 as
N →∞. Therefore, for any chosen ε > 0, the equivalent statement for the validity of RH will be satisfied and
the Riemann Hypothesis is proved.

Interestingly, the aforementioned maximum deviation from the one-half power-law expectation in the
random walk of L(N) is exactly the half-width of the critical strip around Re(s) = 1/2 that contains all the
zeros of the of the zeta function. As that deviation approaches zero as N →∞, that width is also zero, ensuring
that all the non-trivial zeros of the zeta function lie on Re(s) = 1/2.

(8) In Appendix V, starting from Littlewood’s ansatz, that |L(N)| ∼ Na, for N →∞, we argue that
the statistics of the λ’s must become “self-similar” over large consecutive sequences of λ’s. It is shown that,
if we choose two sets S−(N) and S+(N) of consecutive integers, each of them containing k integers,§ then
the λ’s defined over these sets S−(N) and S+(N) are statistically similar to each other. This statistical
similarity is shown to hold for all large k i.e for all N = k2, which implies the statistical behavior of λ’s are
independent of the length k of S−(N) and S+(N) for large but arbitrary N = k2. This principle yields us
the value of a = 1

2 , which again would satisfy the equivalent statement of the RH. This ‘physicist’s proof’
of the RH, is separate from the argument in the main paper, and may be treated as an interesting addendum to it.

(9) Finally, in Appendix VI, we show the sequence of λ’s is statistically indistinguishable from coin tosses
(using the χ2 statistical test) over many sets of consecutive integers (as was demonstrated in Appendix V).
Further it is also shown that the sequence λ’s is indistinguishable from coin tosses over the entire range of
numbers from n = 1 to 176 trillion. This verification has been done by actual numerical computation over large
sets of integers (which are below 176 trillion). While this is merely a ‘verification’, not a ‘proof’, this empirical
result follows directly from our proof of the Riemann Hypothesis, and affirms its sound basis.

Interestingly, it is also shown in Appendix VI that a connection exist between L(N) and χ2 when compared
to a sequence of coin tosses. From the relation Eq.(9), p 24, one can conclude that to satisfy Littlewood’s
condition, only the first and second moments of the distributions of lambda and coin toss sequences need be
similar.

Because of the extensive computations and calculations made, which are backed by theory, Appendix VI
can be thought of as an experimental physicists’ verification of the ‘Law of Riemann’.

1 Introduction

This paper investigates the behaviour of the Liouville function, (ref. Apostol (1998), which is related to Riemann’s
zeta function, ζ(s), defined by

ζ(s) =

∞∑
n=1

1

ns
, (1.1)

where n is a positive integer and s is a complex number, with the series being convergent for Re(s) > 1.
This function has zeros (referred to as the trivial zeros) at the negative even integers −2,−4, . . .. It has been

§The set S−(N) contains k consecutive integers ending with the integer N = k2, and S+(N) contains the next k consecutive
numbers, see Appendix V for details and definitions
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shown¶ that there are an infinite number of zeros on the line at Re(s) = 1/2. Riemann’s Hypothesis (R.H.)
claims that these are all the nontrivial zeros of the zeta function. The R.H. has eluded proof to date, and
this paper demonstrates that it is resolvable by tackling the Liouville function’s Dirichlet series generated by
F (s) ≡ ζ(2s)/ζ(s), which is readily rendered in the form

F (s) =

∞∑
n=1

λ(n)

ns
, (1.2)

where λ(n) is the Liouville function defined by λ(n) = (−1)Ω(n), with Ω(n) being the total number of prime
numbers in the factorization of n, including the multiplicity of the primes. We would also need the summatory
function L(N), which is defined as the partial sum up to N terms of the following series:

L(N) =

N∑
n=1

λ(n) (1.2b)

Since the function F (s) will exhibit poles at the zeros of ζ(s), we seek to identify where ζ(s) can have zeros
by examining the region over which F (s) is analytic. By demonstrating that a sufficient condition, derived by
Littlewood (1912),(in Edwards(1974)), for the R.H. to be true is indeed satisfied, we show that all the nontrivial
zeros of the zeta function occur on the ‘critical line’ Re(s) = 1/2.

Briefly, our method consists in judiciously partitioning the set of positive integers (except 1) into infinite
subsets and couching the infinite sum in (1.2) into sums over these subsets with each resulting sub-series being
uniformly convergent. This method of considering a slowly converging series as a sum of many sub-series was
previously used by the author in problems where Neumann series were involved Eswaran (1990)).

In this paper we break up the sum of the Liouville function into sums over many sub-series whose behaviour
is predictable. It so turns out that one prime number p (and its powers) which is associated with a particular
sub-series controls the behaviour of that sub-series.

Each sub-series is in the form of rectangular functions (waves) of unit amplitude but ever increasing
periodicity and widths - we call these ‘harmonics’ - so that every prime number is thus associated with such
harmonic rectangular functions which then play a role in contributing to the value of L(N). It so turns out that
if N goes from N to N + 1, the new value of L(N + 1) depends solely on the factorization of N + 1, and the
particular harmonic that contributes to the change in L(N) is completely determined by this factorization. Since
prime factorizations of numbers are uncorrelated, we deduce that the statistical distribution of L(N) when N
is large is like that of the cumulative sum of N coin tosses, (a head contributing +1 and a tail contributing -1),
and thus logically lead to the final conclusion of this paper.

We found a new method of factoring every integer and placing it in an exclusive subset, where it and its
other members form an increasing sequence which in turn factorize alternately into odd and even factors; this
method exploited the inherent symmetries of the problem and was very useful in the present context. Once this
symmetry was recognized, we saw that it was natural to invoke it in the manner in which the sum in (1.2) was
performed. We may view the sum as one over subsets of series that exhibit convergence even outside the domain
of the half-plane Re(s) > 1. We were rewarded, for following the procedure pursued in this paper, with the
revelation that the Liouville function (and therefore the zeta function) is controlled by innumerable rectangular
harmonic functions whose form and content are now precisely known and each of which is associated with a
prime number and all prime numbers play their due role. And in fact all harmonic functions associated with
prime numbers below or equal to a particular value N determine L(N). The underlying symmetry being alluded
to here, remained hidden because the summation in (1.2) is written in the usual manner, setting n = 1, 2, 3, ...
in sequence.

From the next section onwards the paper follows the plan enunciated in the Extended Abstract and indicated
by the the steps (1) to (9) detailed therein.

2 Partitioning the Positive Integers into Sets

The Liouville function λ(n) is defined over the set of positive integers n as λ(n) = (−1)Ω(n), where Ω(n) is the
number of prime factors of n, multiplicities included. Thus λ(n) = 1 when n has an even number of prime factors
and λ(n) = −1 when it has an odd number of prime factors. We define λ(1) = 1. It is a completely arithmetical
function obeying λ(mn) = λ(m)λ(n) for any two positive integers m, n.

¶This was first proved by Hardy (1914).
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We shall consider subsets of positive integers such as {n1, n2, n3, n4, ...} arranged in increasing order and
are such that their values of λ alternate in sign:

λ(n1) = −λ(n2) = λ(n3) = −λ(n4) = ... (2.3)

It turns out that we can label such subsets with a triad of integers, which we now proceed to do. To construct
such a labeling scheme, consider an example of an integer n that can be uniquely factored into primes as follows:

n = pe11 p
e2
2 p

e3
3 ...p

eL
L pipj (2.4)

where p1 < p2 < p3... < pL < pi < pj are prime numbers and the ek, k ∈ {1, 2, 3, ..., L} are the integer exponents
of the respective primes, and pL is the largest prime with exponent exceeding 1, the primes appearing after pL
will have an exponent of only one and there may a finite number of them, though only two are shown above.
Integers of this sort, with at least one multiple prime factor are referred to here as Class I integers. In contrast,
we shall refer to integers with no multiple prime factors as Class II integers. A typical integer, q, of Class II may
be written

q = p1p2p3...pjpL, (2.5)

where, once again, the prime factors are written in increasing order.
We now show how we construct a labeling scheme for integer sets that exhibit the property in (2.3) of

alternating signs in their corresponding λ’s. First consider Class I integers. With reference to (2.4), we define
integers m, p, u as follows:

m = pe11 p
e2
2 p

e3
3 ...p

eL−1

L−1 ; p = pL; u = pipj . (2.6)

In (2.6), m is the product of all primes less than pL,the largest multiple prime in the factorization, and u is the
product of all prime numbers larger than pL in the factorization. Thus the Class I integer n can be written

n = mpeLu (2.7)

Hence we will label this integer n as (m, peL , u),using the triad of numbers(m, p, u) and the exponent eL. It is
to be noted that u will consist of prime factors all larger than p, and u cannot be divided by the square of a
prime number.

Consider the infinite set of integers, Pm;p;u, defined by

Pm;p;u = {mp2u,mp3u,mp4u, ...} (2.8)

The Class I integer n necessarily belongs to the above set because eL ≥ 2. Since the consecutive integer members
of this set have been obtained by multiplying by p, thereby increasing the number of primes by one, this set
satisfies property (2.3) of alternating signs of the corresponding λ’s. Note that the lowest integer of this set
Pm;p;u of Class I integers is mp2u.

We may similarly form a series for Class II integers. The integer q in (2.5) may be written q = mpu, with
m = p1p2p3...pj , p = pL, and u = 1. This Class II integer is put into the set Pm;p;u defined by

Pm;p;1 = {mp,mp2,mp3,mp4, ...}. (2.9)

The set containing Class II integers is distinguished by the facts that u = 1 for all of them, their largest prime
factor is always p and none of them can be divided by the square π2 of a prime number π such that π < p; in
other words the factor m cannot be divided by the square of a prime. In this set, too, the λ’s alternate in sign
as we move through it and so property (2.3) is satisfied. Again, note that the lowest integer of this set Pm;p;1 is
the Class II integer mp, all the others being Class I.

In what follows, we shall find it handy to refer to the set of ascending integers comprising Pm;p;u as a ‘tower’.
It is important to distinguish between a tower (or set) described by a triad like (m, p, u) and an integer belonging
to that set. It is worth repeating that the set or tower of Class I integers described by the label (m, p, u) is the
infinite sequence {mp2u,mp3u,mp4u, ...}, the first element of which is mp2u and all other members of which are
mpku, where k > 2. A set or tower containing a Class II integer described by (m, p, u = 1) is the infinite sequence
{mp,mp2,mp3, ...}, Eq.(2.9), of which only the first element mp is a Class II integer and all other members,
mpk, where k ≥ 2, are Class I, because the latter have exponents greater than 1. For convenient reference, we
shall refer to the first member of a tower as the base integer or the base of the tower. It is also worth noting that
when we refer to a triad like (m, pk, u), where k > 1, we are invariably referring to the integer mpku and not to
any set or tower. Labels for sets do not contain exponents; only those for integers do. Of course, the particular
integer (m, pk, u) belongs to the set or tower (m, p, u).
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Two simple examples illustrate the construction of the sets denoted by Pm;p;u:

Ex. 1: The integer 2160, which factorizes as 24 × 33 × 5, is clearly a Class I integer since it is divisible by the
square of a prime number—in fact there are two such numbers, 2 and 3—but we identify p with 3 as it is the
larger prime. It is a member of the set P16;3;5 = {16× 32 × 5, 16× 33 × 5, 16× 34 × 5, 16× 35 × 5, ...}.
Ex. 2: The integer 663, which factorizes as 3× 13× 17, is a Class II integer because it is not divisible by the
square of a prime number. It belongs to the set P39;17;1 = {39× 17, 39× 172, 39× 173, ....}.

Note that two different integers cannot share the same triad.‖ And two different triads cannot represent
the same integer.∗∗ Thus the mapping from a triad to an integer is one-one and onto. A formal proof is in the
Appendix.

The following properties of the sets Pm;p;u may be noted:

(a) The factorization of an integer n immediately determines whether it is a Class I or a Class II type of
integer.

(b) The factorization of integer n also identifies the set Pm;p;u to which n is assigned.

(c) The procedure defines all the other integers that belong to the same set as a given integer.

(d) Every integer belongs to some set Pm;p;u (allowing for the possibility that u = 1) and only to one set.
This ensures that, collectively, the infinite number of sets of the form Pm;p;u exactly reproduce the set of positive
integers {1, 2, 3, 4, ....}, without omissions or duplications.

Our procedure, taking its cue from the deep connection between the zeta function and prime numbers, has
constructed a labeling scheme that relies on the unique factorisation of integers into primes. In what follows, we
shall recast the summation in (1.2) into one over the sets Pm;p;u.The advantage of breaking up the infinite sum
over all positive integers into sums over the Pm;p;u sets will soon become clear.

3 An alternative expression of the Liouville Function’s Dirichlet series

The usefulness of this Section and the next (i.e. Sections 3 and 4) is to show that the cumulative summatory
function L(N) = ΣNn=1λ(n), can be built up by ‘harmonic rectangular waves’, thus providing a pictorial
representation of the function L(N). This pictorial view which helped us to understand the phenomena in
RH, actually followed the discovery of an alternative expression for Eq(1.2) namely the representation Eq(3.10).
This expression is written in terms of ‘towers’ which as we shall see help in our study of the properties of L(N).
The kinks in the rectangular waves which occur at integer values k in the argument of λ(k) each contribute
either +1 or -1 to L(N) and are distributed like coin tosses and their summation is akin to the cumulative sum
of N coin tosses. Eq. (3.10) has also helped in evolving the concepts of Towers described in the section preceding,
and apart from this Eq(3.10) plays no crucial role in the proof of RH.

THEREFORE ON A FIRST READING THE FOLLOWING CAN BE OMITTED: SEE FOOT NOTE.††

We shall now implement the above partitioning of the set of all positive integers to examine the analytic
properties of F (s) in (1.2). We shall rewrite the sum in (1.2) into an infinite number of sums of sub-series.

We begin, however, by assuming that Re(s) > 1, which makes the series in (1.2) absolutely convergent, in
fact it represents ζ(2s)/ζ(s) and is well defined for Re(s) > 1. We will not be needing the expression for regions
Re(s) < 1. ‡‡ We write the right hand side in sufficient detail so that the implementation of the partitioning

‖The integer represented by the triad (m, pr, u), is the product mpru, which obviously cannot take on two distinct values.
∗∗Suppose two different triads (m, pr, u) and (µ, πρ, ν) represent the same integer, say n. Then we must have mpru = µπρν = n.It
follows that at least two numbers of the tetrad {m, p, r, u} must differ from their counterparts in the tetrad {µ, π, ρ, ν}. Since the
factorization of n is unique, this is impossible.
††On a first reading Sections 3 and 4 can be omitted. And one can go directly to Section 5 and after reading the proof of Theorem
1, in Section 5.1, skip the rest of this subsection and go directly to subsection 5.2, in page 12 and read till the end of the paper.
Though, the last four paragraphs of Section 4 should be read to understand the Figure. Sections 3 and 4 have been included to
maintain mathematical rigor: To demonstrate that expressions (1.2) and (3.10) have the same analytical continuation to the left of
Re(s) = 1 by Littlewood’s theorem.
‡‡Though each sub-series is convergent for Re(s) < 1- see Titchmarsh or Whittaker and Watson.
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scheme becomes self-evident:

F (s) = 1 +

∞∑
r=1

λ(2r)

2rs
+

∞∑
r=1

λ(3r)

3rs
+

∞∑
r=1

λ(5r)

5rs
+

∞∑
r=1

λ(2× 3r)

2s3rs

+

∞∑
r=1

λ(7r)

7rs
+

∞∑
r=1

λ(2× 5r)

2s5rs
+

∞∑
r=1

λ(11r)

11rs
+

∞∑
k=2

λ(2k × 3)

2ks3s

+

∞∑
r=1

λ(13r)

13rs
+

∞∑
r=1

λ(2× 7r)

2s7rs
+

∞∑
r=1

λ(3× 5r)

3s5rs
+

∞∑
r=1

λ(17r)

17rs

+

∞∑
r=1

λ(19r)

19rs
+

∞∑
k=2

λ(2k × 5)

2ks5s
+

∞∑
r=1

λ(3× 7r)

3s7rs
+

∞∑
r=1

λ(2× 11r)

2s11rs

+

∞∑
r=1

λ(23r)

23rs
+

∞∑
r=1

λ(2× 13r)

2s13rs
+

∞∑
k=2

λ(2k × 7)

2ks7s
+

∞∑
r=1

λ(29r)

29rs

+

∞∑
r=1

λ(2× 3× 5r)

2s3s5rs
+ · · · , (3.10)

We have explicitly written out a sufficient number of terms of the right hand side of (1.2) so that those
corresponding to each of the first 30 integers are clearly visible as a term is included in one (and only one) of
the sub-series sums in (3.10). On the right hand side, the second term contains the integers 2, 4, 8, 16....; the
third contains 3, 9, 27, ...; the fourth contains 5, 25, 125, ...; the fifth contains 6, 18, 54, ...; sixth contains 7, 49, ...;
the seventh contains 10, 50, ...; the eighth contains 11, 121, ...; the ninth contains 12, 24, 48, ...; and so on. Note
that in the ninth, fifteenth, and twentieth terms the running index is deliberately switched from r to k to alert
the reader to the fact that the summation starts from 2 and not from 1 as in all the other sums. (Note that, in
the ninth term, the Class I integer n = 12 = 22 × 3 is assigned to the set P1;2;3 = {22 × 3, 23 × 3, 24 × 3, ...} and
not to the set P4;3;1 = {22 × 3, 22 × 32, 22 × 33, .}, because the first term identifies p as 2 and u as 3 where as
the second term onwards 3 has exponents, which violates our rules of precedence and would be an illegitimate
assignment given our partitioning rules.)

The sub-series in (3.10) have one of two general forms:

∞∑
r=1

λ(m.pr)

ms.prs
=
λ(m.p)

ms.ps
[1− 1

ps
+

1

p2s
− 1

p3s
+ · · ·+ (−1)X

pXs
+ · · · ]

or
∞∑
k=2

λ(m.pk.u)

ms.pk.us
=
λ(m.p2.u)

ms.p2s.us
[1− 1

ps
+

1

p2s
− 1

p3s
+ · · ·+ (−1)X

pXs
+ · · · ] (3.11)

The above geometric series occurring within square brackets in the above two equations can actually be summed
(because they are convergent),(see Whittaker and Watson) but we will refrain from doing so, and (1.2) can be
rewritten as

F (s) =
∑
m

∑
p

∑
u

FTm;p;u(s) +
∑
m

∑
p

FTm;p;1(s), (3.12)

where the first group of summations pertains to Class I integers n characterized by the triad (m, pk, u), (k ≥ 2)
and the second group pertain to those integers which are characterized by set (m, pk, 1), (k ≥ 1) the first member
in the set is a Class II integer and others Class I.

In the above we have defined the function FTm;p;u(s) of the complex variable s which is a sub-series involving
terms over only the tower (m, p, u) for a Class I integer as follows

FTm;p;u(s) =

∞∑
k=2

λ(mpku)

mspksus
, (3.13)

and the function FTm;p;1(s) of the complex variable s which is a sub-series involving terms over only the tower
(m, p, 1) whose 1st term is a Class II integer as

FTm;p;1(s) =

∞∑
r=1

λ(mpr)

msprs
(3.14)
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With the understanding that when u = 1 we use the function in (3.14) instead of (3.13), we may write F (s)
as

F (s) =
∑
m

∑
p

∑
u

FTm;p;u(s). (3.15)

Comparing the above Eq.(3.15) with Eq(3.10) one can easily see that each term which appears as a
summation in (3.10) is actually a sub-series over some tower which we denote as FTm;p;u(s) in (3.15). So we
see that F (s) has been broken up into a number of sub-series. The important point to note is that the λ value of
each term in the sub-series changes its sign from +1 to -1 and then back to +1 and -1 alternatively. Therefore if
the starting value of λ at the base was +1 then the cumulative contribution of this tower (sub series) to L(N)
as N, the upper bound, increases from N to N + 1, N + 2, N + 3, .... will fluctuate between be 0 and 1. For
some other tower whose base value of λ is −1 its cumulative contribution to L(N) will fluctuate between 0 and
−1; these cumulative contributions can be represented in the form of a rectangular wave as shown in Figure 1.

We have arrived at a critical point in our paper. We have cast the original function F (s) ≡ ζ(2s)/ζ(s) as a
sum of functions of s. Since the triad (m, pk, u) uniquely characterises all integers, the summations over m, p, k
and u above are equivalent to a summation over all positive integers n, as in (1.2), though not in the order
n = 1, 2, 3, 4, .... The manner in which the triads were defined ensures that there are neither any missing integers
nor integers that are duplicated.(See Theorems A and B in Appendix II.)

Although we did not explicitly do it, we mentioned in passing that the sum over k in (3.13)and (3.14) is
readily performed since it is a geometric series (see (3.11)) that rapidly converges. This is true not merely for
Re(s) > 1 but also as Re(s)→ 0. Whether F (s) converges when the summation is carried out over all the towers
(m, p, u) and, if so, over what domain of s is the central question that we seek to answer in the next section. The
answer to which as we shall see determines the analyticity of F(s) and thus resolves the Riemannian Hypothesis.
We can recast (3.15), still in the domain Re(s) > 1, in the form

F (s) =

∞∑
n=1

h(n)

ns
, (3.16)

where h(n) is a function appropriately defined below.
By construction, every n in the above summation can be written as

n = µπρν, (3.17)

where µ, π, and ρ are positive integers, π is the largest prime in the factorization of n, with either (i) an exponent
ρ ≥ 2, and ν is the product of primes larger than π but with exponents equal to 1 (for Class I integers) or (ii)
it is the largest prime factor with ρ = 1 and ν = 1 (for Class II integers).

We define h(n) as follows:

h(n) = λ(mpku) if µ = m and π = p and ν = u 6= 1 and ρ = k > 1 (3.18a)

h(n) = λ(mpk) if ν = u = 1 and π = p and ρ = k ≥ 1 (3.18b)

h(1) = 1 by definition. (3.18c)

Note for all n > 1, (3.18a) and (3.18b) taken together, defines the h(n) for all Class I and Class II integers n.
The factors mspksus and mspks in the denominators of (3.13) and (3.14) are simply ns, where n is the integer
characterized by the (m, pk, u) triad (with u = 1 in the latter case).

4 Representation of the summatory Liouville function L(N)

We are now in a position to examine the summatory Liouville function L(N) and to depict the sum for any
given finite N, as arising from individual contributions from ’rectangular waves’.

To do all this systematically, we will explicitly illustrate the process starting from N = 1, 2, 3... up to
N = 15. Each of these numbers is factored and expressed uniquely as a triad. The N=1 is a constant term,
which is the trivial (1, 1, 1), then the next number N = 2 = (1, 2, 1), is contained in the tower shown below
the one corresponding to N = 1; and N = 3 = (1, 3, 1), is the tower below the previous; 4 = (1, 22, 1) however
4 is already contained in the tower (1, 2, 1) as its second member; the next N’s: 5, 6, 7, give rise to the new
towers (1, 5, 1), (2, 3, 1), (1, 7, 1); 8 of course is the third member of the old tower (1, 2, 1) similarly 9 is the 2nd
member of (1, 3, 1). After this the new towers which make their appearance are: 10 = (2, 5, 1), 11 = (1, 11, 1), 13 =
(1, 13, 1), 14 = (2, 7, 1) and 15 = (3, 5, 1). Figure 1 shows these and numbers up to N=30.
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Fig. 1. The cumulative sum, L(N) (see top), is obtained by ‘filling up’ slots in various towers from the bottom
up until we have exhausted all N integers.

Now each tower (m, p, u) contributes to L(N) (consider N fixed in the following) according to the following
rules:

(i) A particular tower will contribute only if its base number is less than or equal to N, i.e. m.p.u ≤ N
(ii) And the contribution C to L(N) from this particular tower will be exactly as follows:
Case A; Class II integer (u = 1)
C = ΣRr=1λ(m.pr.1) , where R is the largest integer such that m.pR ≤ N
Case B; Class I integer (u > 1)
C = ΣKk=2λ(m.pk.u), Where K is the largest integer such that m.pK .u ≤ N
Now since each successive λ changes sign from +1 to −1 or vice a versa, the contributions of each tower

can be thought of as a rectangular wave of ever-increasing width but constant amplitude −1 or +1, see Figure
1.

To find the value of L(N), (N fixed), all we need to do is count the jumps of each wave: as we move from
N=0 a jump upwards is called a positive peak, a jump downwards is a negative peak. Draw a vertical line at
N, we are assured that it will hit one and only one peak (positive or negative) in one of the sub-series; then
count the total number of positive peaks P(N) and negative peaks Q(N), of the waves on and to the left of this
vertical line, then L(N) = P (N)−Q(N); the reason for this rule will be clear after the next section.

For an example, take N = 5. There is a positive peak for the constant term (1,1,1), the next wave (1,2,1)
contributes one negative peak (at 2) and a positive peak (at 4), the wave (1,3,1) contributes a −1 peak (at 3)
and (5,1) contributes a −1 peak (at 5). Thus a total of three negative peaks and two positive peaks add up to
give L(5) = −1, which is of course correct. Now if we take N = 10, and draw a vertical line at N=10, looking at
this line and to its left we see that there are additionally three positive and two negative peaks thus adding this
contribution of +1 to the previously calculated value L(5) we get L(10) = 0. (Two red vertical lines just just
beyond N=5 and N=10 are drawn for convenience.) Now if we wish to compute L(15) we see that there are three
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more negative peaks and two positive peaks thus giving a value L(15) = −1. Counting the peaks further on it
is easy to check that L(N) is correctly predicted for every value of N up to 30 and in particular, L(20) = −4,
L(26) = 0 and L(30) = −4.

In summary, to calculate L(N) we merely need to count the negative and positive peaks of the waves on N
and to the left of N. In the figure we have drawn a number of waves and labeled the tower to which each belongs
using a triad of numbers. They are sufficient for one to easily calculate L(N) up to N=30 and check them out
by comparing the numbers with the plot of L(N) shown on the top of the figure.

We turn to a more fundamental point: We show, in Section 6, that, for sufficiently large N (see Appendix
IV), the distribution of the value of L(N) is equivalent to that obtained from summing the distribution of N
coin tosses.

5 Determination of Analyticity of F (s) using Littlewood’s Theorem

We now utilize a technique introduced by Littlewood (1912), to examine the analyticity of the function F (s).
In this, we follow the treatment of Edwards (1974, pp. 260-261).

We have seen that there are two equivalent expressions F (s) viz. Eqs.(1.2) and (3.10) both of which are
given in the form of a series and are absolutely convergent in the region Re(s) > 1. We will therefore follow the
following two procedures:

(i) By using Littlewoods technique we will analytically continue Eq (1.2), which is convergent for Re(s) > 1
to regions Re(s) < 1 and then see that his theorem determines a condition on L(N) for N large, for RH to be
true.

(ii) Similarly instead of using Eq (1.2) we use the equivalent (3.10) and use Littlewood’s technique to
analytically continue Eq (3.10) which is convergent for Re(s) ¿ 1 to regions Re(s) ¡ 1 . This also gives a same
condition as (a) on L(N) for N large for RH to be true. But this time the condition can be interpreted by
a FIGURE. And the FIGURE reveals a clear analogy with coin tosses. Strictly speaking our treatment (ii)
is redundant except for the understanding of the connection of L(N) with coin tosses. In fact for the rest of
the paper we do not need Eq. (3.10) or the Figure, except that the concept of Towers and the factorizations
of integers and the determination of their membership to different towers would be needed to prove several
theorems.

5.1 Littlewood’s theorem applied to F(s) viz. Eqs.(1.2) & (3.10)

We have seen that (1.2) we define:

F (s) =

∞∑
n=1

λ(n)

ns
, (5.19)

Similarly the alternative expression (3.10) written in the form Eq. (3.16) is:

F (s) =

∞∑
n=1

h(n)

ns
, (5.20)

with the definition given in (3.18).
Since both of the above expressions are similar in form we use the following generic expression for the

purpose of analysis:

F (s) =

∞∑
n=1

g(n)

ns
, (5.21)

where g(n) can mean λ(n) or h(n) as the case may be.
The above series (5.19) can be expressed as the integral

F (s) =

∞∫
0

x−sdG(x), (Re(s) > 1), (5.22)

where G(x) =
∫ x

0
dG is a step function that is zero at x = 0 and is constant except at the positive integers, with a

jump of g(n) at n. The value ofG(n) at the discontinuity, at an integer n, is defined as (1/2)[G(n− ε) +G(n+ ε)],
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which is equal to
∑n−1

j=1 g(j) + (1/2)g(n). Assuming Re(s) > 1, integration by parts yields

F (s) =

∞∫
0

d[x−sG(x)]−
∞∫

0

G(x)d[x−s] (5.23)

= lim
X→∞

[X−sG(X) + s

X∫
0

G(x)x−s−1dx

= s

∞∫
0

G(x)x−s−1dx, (5.24)

where the last step follows from the fact that | G(X) |≤ X, which implies that X−sG(X)→ 0 as X →∞. We
further observe, following Littlewood (1912), that as long as G(X) grows less rapidly than Xa for some a > 0,
the integrals in (5.21) and in the line preceding it converge for all s in the half-plane Re(a− s) < 0, that is, for
Re(s) > a. By analytic continuation, F (s) converges in this half-plane. Since this result will be important in
what follows, we record it here.

Theorem [Littlewood (1912)]: When G(X) grows less rapidly with X than Xa for some a > 0, F (s) is
analytic in the half-plane Re(s) > a.

We have obtained the above generic result for the analytic continuation of the function given by Eq(5.21).
We will now apply it for the case (i) i.e. Eq. (5.19),in this case g(n) ≡ λ(n) and X ≡ N thus making
G(X) ≡ L(N). Thus the above Littlewood’s Theorem becomes the condition for the analytic continuation
of(5.19) and which is now restated to read:

Theorem 1 [Littlewood (1912)]: When L(N) grows less rapidly with N than Na for some a > 0, F (s) is
analytic in the half-plane Re(s) > a.

We shall now demonstrate that the sufficient condition stated in Theorem 1 is satisfied for a specific value
of a that settles the Riemann Hypothesis. (It will turn out that a = 1/2).

Now before devoting the rest of the paper to show that the above condition holds for RH. We will use the
analysis for the analytical continuation of (5.20) i.e. Case (ii).

Hence our definition of G(N) becomes

G(N) =

N∑
n=1

g(n), (5.25)

and we may rewrite G(N) as

G(N) =
∑
m

∑
p

∑
u

∑
k

[
(1− δu,1).(1− δk,1)λ(mpku) + δu,1λ(mpk)

]
, (5.26)

where δu,1 and δk,1 are Kronecker deltas (e.g. δu,1 = 1 if u = 1 and 0 otherwise). The summations over m, p,
k, and u in (5.26) are undertaken with the understanding that the triads (m, pk, u) will only include integers
n ≤ N . Since the summation over k is over an individual tower(if we keep (m,p,u) fixed we can write(5.26) as

G(N) =
∑
m

∑
p

∑
u

FTm,p,u(s = 0), (5.26b)

This is nothing but Eq.(3.15) evaluated from each subseries FTm,p,u(s) by making s→ 0.
Of course, what we have called G(N) is really the summatory Liouville function, L(N), defined earlier by

(1.2b), because each integer n occurs only once in the r.h.s. of (5.26b) as an argument of λ i.e. λ(n), Therefore
the G(N) is really L(N), hence

L(N) =

N∑
n=1

λ(n). (5.24)

From now on, we revert to the original definitions of the sequence h(n) ≡ λ(n) and G(N) ≡ L(N) as defined
in Eq. (1.2) but we may write them in the forms derived in Section 2 using triads.
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5.2 Derivation of Theorems concerning Factorization Sequence of λ′s and the Final Proof of the
Riemann Hypothesis

In this subsection we will derive several crucial theorems concerning the sequence of λ′s.
Expression (5.26) is crucial because, in the light of Theorem 1, its behaviour will determine the validity of

the Riemann Hypothesis. Every term in the summation in (5.26) is either +1 or −1. We need to determine, for
given N , how many terms contribute +1 and how many −1, and then determine how the sum G(N) varies with
N .

As we go through the list n = 1, 2, 3, · · · , N , we are assigning the integers to various sets of the kind Pm;p;u.
To use our terminology of towers, we shall be ‘filling up’ slots in various towers from the bottom up until we have
exhausted all N integers. (When N increases, in general, we shall not only be filling up more slots in existing
towers but also adding new towers that were previously not included.) So the behaviour of G(N) is determined
by how many of the numbers that do not exceed N contribute +1 and how many −1.

It is convenient to identify the λ of an integer by the triad which uniquely defines that integer. To avoid
abuse of notation, we shall denote the value λ(n) in terms of the λ-value of the base integer of the tower to
which n belongs. We will define the λ of the base of a tower in uppercase, as Λ(m, p, u). In other words if
n = (m, pρ, u) then it will belong to a tower whose base number is nB ≡ (m, pκ, u), where κ = 2 if u 6= 1 and
κ = 1 if u = 1. Now we define Λ(m, p, u) = λ(nB) = λ(mpκu) = λ(m)λ(pκ)λ(u), since the λ of a product of
integers is the product of the λ of the individual integers. Of course, once we know λ(nB) we will know the λ of
all other numbers belonging to the tower because they alternate in sign.

To determine the behaviour of G(N), the following theorem is important.
Theorem 2: For every integer that is the base integer of a tower labeled by the triad (m, p, u), and therefore

belonging to the set Pm;p;u, there is another unique tower labeled by the triad (m′, p, u) and therefore belonging
to the set Pm′,p,u with a base integer for which Λ(m′, p, u) = −Λ(m, p, u).

Proof:
Let us write the integers at the base of a tower in the form n = mpρu described by the triad (m, p, u),

where we shall assume that ρ = 2 if u 6= 1 and ρ = 1 if u = 1. These correspond to the smallest members of sets
of Class I and Class II integers, respectively, which are the integers of concern here. In the constructions below,
we shall multiply (or divide) m by the integer 2. Since 2 is the lowest prime number, such a procedure does not
affect either the value of p or u in an integer and so we can hold these fixed.

We begin by excluding, for now, triads of the form (1, p, 1), integers which are single prime numbers. We
allow for this in Case 3 below.

Case 1: Suppose m is odd. We choose m′ = 2m, then
Λ(m′, p, u) = Λ(2m, p, u) = −Λ(m, p, u). We may say that (m, p, u) and (m′, p, u) are ‘twin’ pairs in the

sense that their Λs are of opposite sign. Note that (m, p, u) and (m′, p, u) are integers at the base of two different
towers; they are not members of the same tower. (Recall that the members of a given tower are constructed by
repeated multiplication with p.)

Case 2: Suppose m is even. In this case, we need to ascertain the highest power of 2 that divides m. If m is
divisible by 2 but not by 22, assign m′ = m/2. (So m = 6 gets assigned to m′ = 3, and m = 3, by Case 1 above,
gets assigned to m′ = 6.) More generally, suppose the even m is divisible by 2k but not by 2k+1, where k is an
integer. Then, if k is even, assign m′ = 2m; and if k is odd, assign m′ = m/2. (So m = 12 = 22 × 3 gets assigned
to m′ = 23 × 3 = 24. And, in reverse, m = 24 = 23 × 3 gets assigned to m′ = 24/2 = 12.)

Thus for odd m the following sequence of pairs (twins) hold:
(m, p, u) and (2m, p, u) are twins at bases of different towers having λs of opposite signs,(this is Case 1),
(22m, p, u) and (23m, p, u) are twins at bases of different towers having λs of opposite signs,
(24m, p, u) and (25m, p, u) are twins at bases of different towers having λs of opposite signs,
and so on.
Case 3: Now consider the case where the triad describes a prime number; that is, it takes the form (1, p, 1).

For the moment, suppose this prime number is not 2. In this case, where m = u = 1, we simply assign m′ = 2.
Clearly,
Λ(2, p, 1) = −Λ(1, p, 1), and the numbers (2, p, 1) and (1, p, 1) are at the bases of different towers.

Case 4: Finally, consider the case where the triad describes a prime number and the prime number is 2;
that is, the integer (1, 2, 1), for which Λ(1, 2, 1) = −1. We match this prime to the integer 1. By definition
λ(1) = Λ(1, 1, 1) = 1. Thus the first two integers have opposite signs for their values of λ. �

So, in partitioning the entire set of positive integers, the number of towers that begin with integers for
which λ = −1 is exactly equal to those that begin with integers for which λ = +1.

Thus, Theorem 2 immediately gives the following result:
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Theorem 3: In the set of all positive integers, for every integer which has an even number of primes in its
factorization there is another unique integer, (its twin), which has an odd number of primes in its factorization.

The consequence of the above theorem follows not just from that each integer has a unique twin whose
λ-value is of the opposite sign, but also from from the context that these lie in an alternating sequence.
That is, not only are the bases of two uniquely-paired towers twins, the next higher number in the first
tower is the twin of the next higher number in the second tower, and so on. Thus every integer with
λ = ±1 in a unique tower is twinned uniquely in alternating sequence with the integers with λ = ∓1 in
another unique tower, ensuring that the proportions of numbers with λ = +1 and λ = −1 are equal over
the entire natural number system. Alternately, it may be argued that each Tower, which is an ordered
infinite sub-set of the natural number system, is itself equally partitioned into members with λ = +1 and
λ = −1 by their alternating sequence in that order. As the natural number system (excluding 1) comprises
only such Towers, it too is so equally partitioned, and has equal proportions of numbers with λ = +1 and λ = −1.

Thus we have shown:∗

Theorem 3B : If n is an arbitrary positive integer,

Prob[λ(n) = +1] = Prob[λ(n) = −1] = 1/2. (19)

The result in Theorem 3B is a necessary condition for RH to be valid; it is not sufficient.† The condition
that is equivalent to proving RH ((Littlewood (1912), Edwards (1974)) is the following:

L(N)

N
1
2 +ε

= 0, as N →∞, (20)

for any ε > 0. We describe how this equivalence is formally proved below.

1. We compare the L(N) series to X(N), the distance travelled in N unit steps in a standard random walk,
which can be represented as:

X(N) =

N∑
n=1

c(n) (21)

where the c(n)’s are independent random numbers with an equal probability of being either +1 or -1, i.e.,
“coin-tosses”. It is a well-known result (see Chandrasekhar (1943)) that the expected value of |X(N)|, for
large N , is

limN→∞E(|X(N)|) = C0N
1/2 (22)

The further line of advance of the proof is to show now that Equation (22) applies to L(N) as well, and
so proves Equation (20), and thereby the RH. To do this we have to prove that the λ(n)’s in the L(N)
series are essentially “coin-tosses”, for large n.

2. To show that the λ’s behave as coin tosses, we have to show that (i) their probabilities of being either +1
of -1 are equal, as was proved by Theorem 3B, further (ii) we have to show that the λ’s appearing in the
natural sequence, n = 1, 2, 3, ..., are independent of each other — i.e., that the value of λ(n) has no influence
on the value of λ(n+ 1), say. This seems counter-intuitive, as the λ’s are obviously deterministically linked.
Nevertheless, their independence in the natural sequence is shown by two different approaches:

(a) In Appendix III, it is proved that the sequence of λ(n), n = 1, 2, 3, ... is non-cyclic. This would preclude
any dependence of the type
λn = f(λn−1, λn−2, λn−3, ..., λn−M )
because any finite series of +1’s and -1’s of length M would have a finite number of permutations
P , so the series λn−1, λn−2, λn−3, ..., λn−M must repeat itself after atmost P numbers, and thereafter
become cyclic if such a dependence relationship exists between the λ’s. The non-cyclic nature of L(N)
conforms also to the notion of randomness in Knuth (1968, Ch. 3).

∗These Theorems 3 and 3B, were later given new, alternate proofs, which only need induction and the starting premise that every
odd integer starting from 1, has a unique successor integer, which is even and with which it forms a unique ‘Pair’ and that the even
integer in every such Pair, has an odd integer which is its predecessor and its ‘partner’, the successor of an even integer is an odd
integer not its ‘partner’. See: K. Eswaran, (April 2018)
†Borwein et al (2006, p. 48) claim that the result in Theorem 3 is equivalent to a proof of RH.
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(b) In Appendix IV, another approach is taken. It is shown that from merely these two rules: λ(p) = −1 for
a prime p, and λ(pq) = λ(p)× λ(q), where q is any integer, the entire sequence of λ’s for n = 1, 2, 3, ...,
can be obtained without determining the number of prime factors of n. It is then argued that for
any two integers n > m, λ(n) is dependent on λ(m), if the latter is required to find the former,
and independent if not. It is then shown that, as n→∞, any finite sequential strip of λ’s will be
independent of each other, thus essentially making them equivalent to coin-tosses.

3. With Theorem 3B and Appendices III and IV, we have proved above that the L(N) series is one realization
of a random walk. We then invoke (towards the end of Section 5 in [5]) Khinchin and Kolmogorov’s law of
the iterated logarithm to show that the maximum deviation dN , from the one-half power-law expectation,
in the exponent of |X(N)| for any individual random walk tends monotonically to zero as N →∞. So (22)
also holds for |L(N)|. Therefore for any chosen ε > 0 in (20), the statement for the validity of RH will be
satisfied and the Riemann Hypothesis is proved.

4. In Appendix V, starting from Littlewood’s ansatz, that L(N) ∼ Na, for N →∞, we argue that the
statistics of the λ’s must become “self-similar”, i.e., independent of N for large N . This principle yields
us the value of a = 1

2 , which again would satisfy (20). This ‘physicist’s proof’ of the RH, is separate from
the argument in the main paper, and may be treated as an interesting addendum to it.

5. Finally, in Appendix VI, we confirm by considering the λ’s from n = 1 to 176 trillion, that their sequence is
statistically indistinguishable (using the χ2 statistical test) from coin-tosses over the entire set of numbers
considered, and also when it is partitioned in smaller sections. While this is merely a ‘verification’, not a
‘proof’, this fact has not been reported in literature, and by itself, requires an explanation (which we have
provided) given its surprising nature.

With Theorem 3B and Appendices III and IV, we have proved that the L(N) series is a random walk. We
formally confirm this below.

Theorem 4: The summatory Liouville function, L(N) =
N∑
n=1

λ(n) has the following asympotitic behaviour:

|L(N)| ≤ C0N
1
2 +dN as N →∞.

Proof: Theorem 3B gives Pr(λ(n) = +1) = Pr(λ(n) = −1) = 1/2 , where Pr denotes probability. Given the
results in Appendicies III and IV, the λ-values behave like ‘ideal coin’ tosses, where λ(n) = +1 as head and
λ(n) = −1 as tail, and L(N) is the cumulative result of N successive coin tosses, and is equivalent to the
distance X(N) moved in a random-walk with N unit steps. Chandrasekhar (1943) has shown that, for a random

walk of N steps, Expectation(|X(N)|) = C0N
1
2 as N →∞. The quantity dN (≥ 0) seen above is the maximum

deviation from expectation of an individual random walk of N steps. QED

We conclude this section by estimating the ‘width’ of the Critical Line, the region around Re(s) = 1/2
in which the non-trivial zeros of ζ(s) must lie. Invoking Littlewood’s Theorem (Sec.5), we deduce that
F (s) ≡ ζ(2s)/ζ(s) is analytic in the region a = 1/2 + d∞ < s < 1 (where d∞ ≡ limN→∞dN ). This implies
ζ(s) has no zeros in the same region. But Riemann had shown by using symmetry arguments‡ that if ζ(s)
has no zeros in the latter region then it will have no zeros in the region 0 < s < 1/2− d∞; taking both these
results together we are lead to the conclusion that all the zeros can only lie in the 1/2− d∞ < Re(s) < 1/2 + d∞.

It is interesting that the law of the iterated logarithm enunciated by Kolmogorov (1929), also see
Khinchine (1924), gives an expression for dN . The statement of the law, adapted to the present context, is:
Let {λn} be independent, identically distributed random variables with means zero and unit variances. Let
SN = λ1 + λ2 + . . . + λN . The limit superior (upper bound) of SN almost surely (a.s.) satisfies

Lim Sup SN√
2N log log N

= 1 as N →∞

Now, from Theorem 4 we have written that if we consider the λ′s as “coin tosses” one can write
L(N) = λ1 + λ2 + . . . + λN ≤ C0N

1
2 +dN (as N →∞) (since we are interested in only the behaviour for

large N we henceforth ignore the constants). Comparing this expression with the one above we see that one

‡He did this first by defining an associated xi function: ξ(s) ≡ Γ(s/2)πs/2ζ(s),Γ(s) is the Euler Gamma function, then showed that
this xi function has the symmetry property ξ(s) = ξ(1− s) which in turn implied that that the zeros of ζ(s) (if any) which are not on

the critical line will be symmetrically placed about the point s=1/2, ie.if ζ( 1
2

+ u+ iσ) is a zero then ζ( 1
2
− u− iσ), (0 < u < 1/2),

is a zero see Whittaker and Watson page 269.
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can write N
1
2 +dN ∼

√
N log log N thus yielding an expression§ for dN = log log log N

2 log N . We see that dN → 0

as N →∞. So the equivalent statement Equation (20) will be satisfied for any chosen ε > 0. Further
d∞ (≡ limN→∞dN ) is the half-width of the critical line. Since this is zero, we conclude that all the non-
trivial zeros of the zeta function must lie strictly on the critical line. Thereby, the Riemann Hypothesis is proved.

6 Conclusions

In this paper we have investigated the analyticity of the Dirichlet series of the Liouville function by constructing
a novel way to sum the series. The method consists in splitting the original series into an infinite sum over
sub-series, each of which is convergent. It so turns out each sub-series is a rectangular function of unit amplitude
but ever increasing periodicity and each along with its harmonics is associated with a prime number and all
of them contribute to the summatory Liouville function and to the Zeta function. A number of arithmetical
properties of numbers played a role in the proof of our main theorem, these were: the fact that each number can
be uniquely factorized and then placed in an exclusive subset, where it and its other members form an increasing
sequence and factorize alternately into odd and even factors and thus have equal proportions of numbers with
λ = +1 and -1; and each subset can be labelled uniquely using a triad of integers which in their turn can be
used to determine all the integers which belong to the subset. This helped us to show that for every integer that
has an even number of primes as factors (multiplicity included), there is an integer that has an odd number of
primes. This provides a proof for the long-suspected (Denjoy 1931) but unproved conjecture—until now—that
the Riemann Hypothesis has a connection with the coin-tossing problem. Further, it has now been revealed
that the randomness of the λ(n)’s in the natural sequence¶ is the reason that the non-trivial zeros of the Zeta
function all lie on the critical line: Re(s) = 1/2.
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8 APPENDIX I: Scheme of partitioning numbers into sets

Our scheme of partitioning numbers into sets is as follows:
(a) Scheme for Class I integers:

Let us say n = pe1p
f
2p
g
3...p

h
mp

k
Lpjpt, then it will have at least one prime which has an exponent of 2 or above

and among these there will a largest prime pL whose exponent is atleast 2 or above. Such a prime will always
exist for a Class I number. Then by definition the number to the right of pL is either 1 or is a product of primes
with exponents only 1. Now multiply all the numbers to the left of pLand call it m i.e. m = pe1p

f
2p
g
3...p

h
m and the

§N
1
2
+dN ∼

√
N log log N = elog

√
N log log N = e

1
2
log{N log log N} = e

1
2
log N + 1

2
log log log N= N

1
2 e

1
2
log log log N which then implies

e
1
2
log log log N = NdN = edN log N thus giving dN = log log log N

2 log N
¶God seems to have “played dice” at least once, when he created the natural number system!
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product of numbers to the right of pLas u i.e. u = pjpt.Now this triad of numbers m, pL, u will be used to label
a set,note n = m.pkL.u Let us define the set Pm;pL;u :

Pm;pL;u = {m.p2
L.u, m.p

3
L.u, m.p

4
L.u, m.p

5
L.u, m.p

6
L.u, m.p

7
L.u, ....} (A1)

Obviously n = m.pkL.u which has k ≥ 2 belongs to the above set. Also notice the factor involved in each number
increases by a single factor of pLtherefore the λvalues of each member alternate in sign:

λ(m.p2
L.u) = −λ(m.p3

L.u) = λ(m.p4
L.u) = −λ(m.p5

L.u) = λ(m.p6
L.u) = .......(A2)

In this paper ALL sets defined as Pm;p;uwill have the property of alternating signs of λ Eq. (A1). Note in the
above set containing only Class I integers m will have only prime factors which are each less than pL.

Let us consider various integers:
Ex 1. Let us consider the integer 73573500; this is factorized as 22.3.53.73.11.13 and since this is a Class I

integer, and pL = 7 because 7 is the highest prime factor whose exponent is greater than one. pL = 7 m = 22.3.53

and u = 11.13 = 143 and therefore 73573500 is a member of the set P1500;7;143

P1500;7;143 = {1500.72.143, 1500.73.143, 1500.74.143, 1500.75.143, ...}

Ex 2. Now let us consider the simple integer: 34 this is a class I integer and belongs to P1;3;1 =
{3, 32, 33, 34, 35, 36, ......}

Ex 3. Let us consider the integer 663 this is factorized as: 3.13.17 and is a Class II integer as there no
exponents greater than 1, and 663 = 3.13.17 and since 17 is the highest prime number we put this in the set:

P39;17;1 = {39.17, 39.172, 39.173, 39.174, ....}.

NOTE: If a tower has a Class II integer then it will appear as the first (base) member, all other numbers will
be Class I numbers.

Ex 4. Let the integer be the simple prime number 19, we write:

19 ε P1;19;1 = {19, 192, 193, 194, .....}

Ex 5. Let the integer be 4845 this is factorized as3.5.17.19 since this is a Class II integer we see
m = 3.5.17 = 255, p = 19, u = 1 and the set which it belongs is

P255;19;1 = {255.19, 255.192, 255.193, 255.194, 255.195, ....}

9 APPENDIX II: Theorems on representation of integers and their partitioning into
sets.

Theorem A: Two different integers cannot have the same triad (m, pk, u)
Let a and b be two integers which when factored according to our convention are a = n.qg.v and b = n′.q′h.v′,

and let us consider only Class I integers u, v and v′ are all > 1.
If they are both equal to the same triad (say) (m, pk.u). Then m.pk.u = n.qg.v = n′.q′h.v′. Consider the

first two equalities m.pk.u = n.qg.v, which means p is the largest prime with k > 1 on the l.h.s. Similarly q is
the largest prime with exponent g > 1 on the r.h.s. Now if p > q this means pk must divide v, but this cannot
happen since v cannot contain a prime greater than q with an exponent k > 1. Now if p < q then qg must divide
u but this again cannot happen since u cannot contain an exponent g > 1. So we see p = q, and k = g. But once
again unique factorization would imply, since u contains all prime factors larger than p and v must contain only
prime factors larger than q(= p), the only possibility is u = v, but this also makes m = n. That is, the triad of
a is (m, pk, u). Similarly equating the second and third equalities n.qg.v = n′.q′h.v′ and using similar arguments
we see n = n′, q = q′, and v = v′; that is, a = b. The same logic can be used to prove the theorem for class II
integers when u = v = v′ = 1. QED.

Theorem B: Two different triads cannot represent the same integer.
If there are two triads (m, pe, u) and (m′, rs, u′) and represent the same integer say a which can be factorized

as a = n.qg.v. Where the factorization is done as per our rules then we must have m.pe.u = n.qg.v by using
exactly similar arguments as above(in Theorem A) we conclude that we must have m = n, p = q, e = g and
u = v; similarly imposing the condition on the second triad m′.rs.u′ = n.qg.v, we conclude m′ = n, r = q, s = g
and u′ = v; thus obtaining m = m′, p = r, e = s and u = u′ this means the two triads are actually identical. QED
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10 APPENDIX III: Non-cyclic nature of the factorization sequence

It is a necessary condition in the tosses of an ideal coin that the results are not cyclic asymptotically, namely
the results cannot form repeating cycles as the number of tosses becomes large.

Definition
Let nk be the number of primes, repetitions counted, in the factorization of a positive integer k. We call

{n1, n2, ..., nk, ....} the factorization sequence.
Note: λ(k) = +1 if nk is even and λ(k) = −1 if nk is odd.
Theorem The factorization sequence is asymptotically non-cyclic.
Proof: The result follows from this claim:
Claim. The sequence λ(1), λ(2), λ(3), ..., λ(n), ..., is asymptotically non-cyclic.
If the claim is not true there would exist an integer t, t ≥ 0, so that the sequence is cyclic (after λ(t)), with

cycle length σ.
By Theorem 3, the number of positive integers with even number of prime factors (counting multiplicities)

equals the number of positive integers with odd number of prime factors (counting multiplicities). Therefore,
the λ’s in each cycle must sum to zero as do the first t λ’s before the cycles start.

Then L(N) ≤ max{t/2, σ/2}.
Now we use Littlewood’s Theorem 1 and noting that in (5.21) G(x) ≡ L(x), we substitute the maximum

value of L(x) as x→∞, viz. | L(x) |= σ/2, and thus deduce that (5.21) will always converge provided 0 < s.
Since, | L(x) |≤ σ/2, L(x) indeed grows less rapidly than xa for all a > 0, satisfying the condition in Theorem
1. This means that we should be able to analytically continue F (s) ∼ ζ(2s)/ζ(s) leftwards from Re(s) = 1 to
Re(s) = 0, contradicting Hardy (1914) [3] that there are very many zeros at Re(s) = 1/2 and these will appear
as poles in F (s). This proves the Claim.QED.

11 APPENDIX IV: The sequence of λ’s in L(N), are equivalent to Coin Tosses

In this paper we showed in Theorem 3, that the λ(n) have an exactly equal probability of being +1 or −1. Then
in Appendix III, we showed that the sequence λ(1), λ(2), λ(3), ..., λ(n), ... can never be cyclic. The latter result
in the minds of most computer scientists would be interpreted as that the sequence of λ’s by virtue of it being
non-repetitive, is truly random,(Knuth (1968); Press etal (1986)) and hence it is legitimate to treat the sequence
as a result of coin tosses and thus one can then say that L(N) = ΣN1 λ(n), will tend to

√
N thus proving RH,

by using the arguments given at Section 5.
However, this done, there would be some mathematicians who may remain unconvinced, because we have

not strictly proved that the λ’s in the series are independent. The purpose of this Appendix ‖ is to prove that this
is indeed the case. This allows us to demonstrate the λ−sequence has the same properties as, and is statistically
equivalent to, coin tosses, thus placing our proof of RH beyond any doubt.

We again consider the series L(N) =
∑N

n=1 λ(n), which is re-written as:

L(N) =

N∑
n=1

Xn (1)

It has already been proved in this paper that, over the set of all positive integers, the respective probabilities that
an integer n has an odd or even number of prime factors are equal. So, Xn (= λ(n)), can with equal probability,
be either +1 or -1. It will now be shown that the values of Xi and Xj , i 6= j, are independent of each other, as
n→∞, and so will become the equivalent of ideal-coin tosses.

11.1 The λ values as a deterministic series

We first show that the λ’s in the natural sequence, far from being random, are actually perfectly predictable
and therefore deterministic. That is, knowing the λ’s (and the primes) up to N , we can directly obtain (without
resorting to factorisation) the λ’s (and primes) up to 2N thus:

We obtain integers m in the range N < m ≤ 2N by multiplying the integers n and q in the range 1 < n, q ≤ N ,
such that N < nq ≤ 2N and then using the property λ(q ∗ n) = λ(q) ∗ λ(n) to find λ(m = q ∗ n). However,
not all the numbers in the range N < m ≤ 2N will be covered by such multiplications. That is, there will
be ‘gaps’ in the natural sequence left in the aforesaid multiplications, where no n and q can be found for
some m’s in N < m ≤ 2N . These m’s will identified as prime numbers. The λ of a prime is -1. Thus, by

‖I thank my brother Vinayak Eswaran for providing the kernel of the proof given in this section.
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knowing the λ’s and the primes up to N , we can predict the λ’s (and primes) up to 2N . This process can
be repeated ad-infinitum to compute the λ’s of the natural sequence up to any N , from just λ(1)=1 and λ(2)=-1.

We emphasize that any other method of evaluating the λ’s, including direct factorisation, must perforce
yield the same sequence as the method above. Therefore, this method offers a complete description of the
determinism embedded in the series.

11.2 Relationships and dependence between λ’s

We note that every integer n has a direct relationship (which we will call a d-relationship) with all numbers
n ∗ p, where p is any prime number. We can define higher-order d-relatives in the following way: the integers
(n, n ∗ p) are in a first-order d-relationship, (n, n ∗ p ∗ q) are in a second-order one, and (n, n ∗ p ∗ q ∗ r) are in
a third-order one, and so on, where p, q, r are primes (not necessarily unequal).

In the deterministic generation of λ’s outlined above, it is clear that their values will be determined through
d-relationships, which would thereby make their respective values dependent on each other. It is evident that
the λs of two d-relatives n and m(> n), are dependent on each other and that λ(m) = (−1)oλ(n), where o is the
order of the relationship.

There is another kind of relationship we must also consider: we can have a c- (or consanguineous) relationship
between two non-d-related integers m and n if they are both d-relatives of a common (‘ancestor’) integer smaller
than either of them. So we can trace back the λ’s along one branch to the common ancestor and trace it up the
other to find the λ of the other integer. It is convenient to take the common ancestor as the largest possible one,
which would be the greatest common factor of the two integers, which we shall call G.

Now we ask the question, when are m and n not related? When they have neither a d-relationship nor a
c-relationship with each other. That is, when they are co-primes: as then neither integer would appear in the
sequence of multiplications that produce the other by the deterministic iterative method. In such a situation,
the λ of neither is dependent on the other, so their mutual λ’s are independent.

Now consider two c-relatives, m and n, which share the greatest common factor G. We can write m = G ∗ P
and n=G ∗Q, where P and Q are chosen appropriately. As G is the greatest common factor of m and n, it is
clear that P and Q are co-primes. Now we consider the relationship between λ(m) and λ(n) and explore their
relatedness. This turns out to be self-evident: As λ(m) =λ(G) ∗ λ(P ) and λ(n) =λ(G) ∗ λ(Q), and we know
that λ(P ) and λ(Q) are independent of each other, it follows that λ(m) and λ(n) are also independent of each
other.∗∗

11.3 The unpredictability of λ values from a finite-length sequence: d-relatives

We have concluded above that the only λ’s in L(N) that are dependent are those between d-relatives, where the
smaller integer is a factor of the other. We see that the distance of two such “first-order” relatives, n and n ∗ p,
from each other is n(p− 1) which increases without bound with n. Further all the first-order d-relatives of n
also have relative distances with each other that are at least as great as n (as their respective p’s will differ at
least by 1). Thus the d-relationship between numbers is a web with increasing distances between their first-order
relatives††. It is also easy to see that the higher-order d-relatives of any integer n will also be at a distance of at
least n from n itself and from each other.

Now we consider if we would be able to predict λ(N + 1) if we know only the λ’s between N − L < n ≤ N ,
where L is some finite number? We would be able to do so only if N + 1 is a d-relative (of any order) of any of
the numbers N − L < n ≤ N . However, for n large enough the d-relatives of N + 1 will be far from it and would
not come in the range of numbers N − L < n ≤ N . So essentially, there is no way of predicting λ(N + 1) from
the range of L λ’s coming before it. This means λ(N + 1) is independent of the range of L λ’s coming before it.
Therefore, the λ’s on all finite lengths are independent of each other, as N →∞.

11.4 Closure

We have investigated the dependence of λ’s appearing in L(N) in the natural sequence n = 1, 2, 3, .., . We first
show that the λ’s are in a perfectly deterministic sequence (which is not random in the slightest way, except
in the unpredictable discovery of primes) that allows us to obtain all of them up to any integer N by knowing

∗∗It may be noticed that m and n belong to different towers. It is worth mentioning that the arguments made here in Appendix
IV, can be couched in the language of towers as we did in Sections 2 and 3.
††How rapidly the relationship distance increases can be gauged from the fact that the 2r sequence, which has the slowest increases,
nevertheless will have its 100th element placed at around n ≈ 1030 in the natural sequence, and the distance to the 101st element
will also be 1030!
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only that λ(1) = 1, λ(2) = −1, λ(q ∗ n) = λ(q) ∗ λ(n), and that λ(p) = −1 for any prime p. We then propose
that the λ’s of two integers m and n can be dependent only if the integers are connected through the sequence
of multiplications involved in the deterministic process. If they are not so related, as would happen if they are
co-primes, their λ’s would be independent. We then investigate the only two possible types of relationships and
show that one, the d-relationship, leads to dependencies between numbers that are increasingly distant. The
other, the c-relationship, is shown to give independent λ’s. The result obtained is that that the λ’s in any finite
sequence are independent, as N →∞. QED

12 APPENDIX V

An Arithmetical Proof for |L(N)| ∼ N1/2 as N →∞

In this appendix we provide an alternate, but this time an arithmetical, proof of the asymptotic behavior
of the summatory Liouville function, viz.|L(N)| =

√
N as N →∞ However in order to do this we first require

to prove a theorem on the number of distinct prime products in the factorization of a sequence of integers and
their exponents. We will be considering special types of Sets S−(N) and S+(N) which contain a sequence of
consecutive integers, they are defined below; each are of length

√
N , where in this section N will always be a

perfect square. A collection of all such sets will contain as its members all the integers and the intersection of
any two different sets will be null. See Tables 1.1 to 1.4 in Appendix VI. We will be studying the contribution of
such sets to the summatory function L(N) in order to determine the asymptotic behavior of the latter as N →∞

Theorem A5 : Consider the sequence S comprising M(N) consecutive positive integers, defined by S−(N) =
{N −M(N) + 1, N −M(N) + 2, N −M(N) + 3, ........, N}, where M(N) =

√
N . Then every number in S−(N)

will firstly belong to different towers,∗ and further every number will: (a) differ in its prime factorization from
that of any other number in S−(N) by at least one distinct prime† OR (b) in their exponents.

The statement of this theorem can be roughly considered as an extremely weak form of Grimm’s
conjecture,(1969) which states that a sequence of k consecutive composite integers will have at least k distinct
primes in their factorization, also see Ramachandra etal.(1975), Grimm’s theorem though not proved, yet, has
been verified for very many subsets, see: S. Laishram and Ram Murty (2006,2012), and Balasubramanian, etal
[2009]. We do not need this very strong version for our arguments.

We first take up the task to prove (a) because it is by far the more common occurrence. In case condition
(a) does not hold in a particular situation then condition (b) is always true, because of the uniqueness of
factorization.

Proof :
Let there be k primes in the sequence S−(N). Denote the j integers in the sequence that are not primes

by the products pibi, i = 1, 2..., j, where pi is a prime and, obviously, k + j = M(N). Denote the subset of
these non-prime integers by J . There is no loss of generality if we assume the primes pi in the products pibi,
i = 1, 2..., j, to be less than

√
N − 1/2 and also the smallest of prime in the product.‡

To prove the theorem, we compare two arbitrary members, pibi and pjbj , i 6= j, belonging to set J .
Case 1: Suppose pi 6= pj . If bi 6= bj , bi must contain a prime that does not appear in the factorization of

bj (and hence pibi must be different from pjbj by this prime). For if bi and bj do not differ by a prime, we must

have bi = bj ≡ b. This means the difference of pibi − pjbj = (pi − pj)b is larger than
√
N in absolute value. This

is not possible since the members of the sequence S−(N) cannot differ by more than
√
N . Therefore bi must

differ from bj by a prime in its factorization.(One may think that it may be plausible that bi = br and bj = bm,
where r and m are positive integers, in which case pibi differs from pjbj only in the prime pi. However, this

eventuality will never arise because then the difference between pibi and pjbj will be more than
√
N .)

Case 2: Suppose pi = pj ≡ p then bi and bj must differ by a prime factor or their exponents are different.
Because of ‘unique factorization’, if they do not differ by a prime factor it means pi.bi = pj .bj = p.b, unless the

factors of bi and bj are of the form: bi = pr11 .p
r2
2 ...p

rk
k and bj = p

r′1
1 .p

r′2
2 ...p

r′k
k which implies that is rl = r′l is not

∗Two numbers n = m.pα.u and n′ = m.pβ .u, (n < n′), of the same tower, cannot both belong to the set S−(N) because they will
be too far separated to be within the set, as their ratio n′/n ≥ p ≥ 2
†For example, if two numbers c and d in S are factorized as c = pe11 pe22 and d = pe33 pe44 then at least one of the primes p3 or p4 will
be different from p1 or p2.
‡This is readily seen as follows. Since every member of J lies between N −

√
N and N , clearly any composite member, written as

a product ab, cannot have both integers a and b less than
√
N − 1/2. (We are invoking the fact that

√
(N −

√
N) =

√
N − 1/2,

approximately.) Let a be the smaller of the two numbers, and so a <
√
N − 1

2
and b >

√
N − 1

2
. If a is a prime number, set p = a.

If a is not a prime number, factorize it and pick the smallest prime p which is one of its prime factors.
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true for all rl, l = 1, 2..k , hence in this case the exponents are different (actually this case is very rare. It can
be shown: the case k = 2 cannot occur and therefore if at all this case occurs, k must be greater than 3).

Since pibi and pjbj are arbitrary members of the set J , it follows that every integer in J must differ from
another integer in J by at least one prime in its factorization or by its exponent, thus making the λ−values of
any two members of the set S−(N) not dependent on each other . �

The above theorem has profound implications for the λ-values of the numbers in the sequence S−(N).
If we take the primes to occur randomly (or at least pseudo-randomly), the λ-value of each of these M(N)
integers—although deterministic and strictly determined by the number of primes in its factorization—cannot
be predicted by the λ-value of any other number in the sequence S−(N). That is, the λ-value of any number
in S−(N) can be considered to be statistically independent of the λ-value of another member of this sequence,
primarily because they stem from different towers and also because (as we have proved in A5) any two such
numbers differ by at least one prime. Hence the λ-values in the sequence S−λ ≡ {λ(N −M(N) + 1), λ(N −
M(N) + 2), λ(N −M(N) + 3), ........, λ(N)}, in which each member has a value either +1 or −1, would appear
randomly and be statistically similar. By this we also deduce that two different sequences of λ−values defined
on two different sets (say) S−(N) and S−(N ′) with N 6= N ′ are statistically similar, because they have the same
properties which also means that they can be separately compared with other sequences of coin tosses and the
comparison should yield statistically similar results.

We will use these deductions to obtain the main result of this appendix viz a = 1/2 in the expression
|L(N)| = Na as N →∞

Although it is not explicitly required for what follows, we note that it is not hard to prove that the
sequence S+(N) ≡ {N + 1, N + 2, N + 3, ........, N +M(N)} of length M(N) also behaves similarly. That is,
every member of S+(N) satisfy condition (a) OR (b) of the above Theorem for S−(N) stated above.
The proof mimics the one provided above and so is omitted.§ Hence the λ-values in the sequence S+

λ ≡
{λ(N + 1), λ(N + 2), λ(N + 3), ..., λ(N +M(N))}, in which each member has a value either +1 or −1, would
also appear randomly and behave statistically similarly.

12.1 Arithmetical proof of |L(N)| ∼
√
N , as N →∞

We now show that if the summatory Liouville function

L(N) =

N∑
n=1

λ(n), (1)

takes the asymptotic form
|L(N)| = C Na, (2)

where C is a constant, then we must have:
a = 1/2. (3)

Throughout this subsection we will always assume that N is a very large integer.
Consider the sequence of consecutive integers of length M(N) =

√
N :

SN = {N −
√
N + 1, N −

√
N + 2, N −

√
N + 3, · · · · · · , N} (4)

Each of the M(N) integers in the sequence SN can be factorized term by term and would differ from another
member in SN by at least one prime or exponent,(as proved in the above theorem).¶

Now since, N is large, all the primes involved may be considered random numbers (or pseudo-random
numbers), therefore as reasoned above, we can conclude that the λ−sequence associated with SN viz.

{λ(N −
√
N + 1), λ(N −

√
N + 2), λ(N −

√
N + 3), · · · · · · , λ(N)} (5)

will take values which are random e.g.

{−1,+1,+1, ,−1,+1, · · · ,+1} (6)

where in the above example λ(N −
√
N + 1) = −1, λ(N −

√
N + 2) = +1 etc. Furthermore, since the λ-values

have an equal probability of being equal to +1 or −1 (Theorem 3) and the sequence is non-cyclic (Theorem 11.1,

§This implies, interestingly, that by choosing N to be consecutive perfect squares, the entire set of positive integers can be envisaged
as a union of mutually exclusive sequences like S−(N) and S+(N).
¶Therefore, in the terminology of Sections 2 and 3, each of them will mostly belong to different Towers.



A Proof of RH 21

in Appendix 3), the above sequence will have the statistical distribution of a sequence of tosses of a coin (Head
= +1,Tail = −1). But we already know from Chandrasekhar(1943) that if the λ’s behave like coin tosses then
|L(N)| ∼

√
N , as N →∞. However, we do not know whether the entire sequence of λ’s occurring in Eq.(13.1)

behaves like coin tosses; for any given N , it is only the subsequence {λ(N −
√
N + 1), λ(N −

√
N + 2), λ(N −√

N + 3), · · · · · · , λ(N)} of length M(N) =
√
N that does behave like coin tosses.

On the other hand if we had a sequence of length N , of real coin tosses (say) c(n), n = 1, 2....N , where
c(n) = ±1, then the cumulative sum, Lc(N), of the first N of such coin tosses is given by:

Lc(N) =

N∑
n=1

c(n). (7)

Then for N large we do know from Chandrashekar (1943) that

|Lc(N)| ∼
√
N. (8)

We can then estimate the contribution P1/2 to Lc(N) from the last M(N) =
√
N terms in Eq.(13.7), this

would be:

P1/2 =

N∑
n=N−

√
N+1

c(n)

= Lc(N)− Lc(N −
√
N) (9)

Now since Eq.(13.7) represents perfect tosses Eq. (13.9) becomes

P1/2 =
√
N − (N −

√
N)1/2 =

1

2
− 1

8

1√
N
,

that is,
P1/2 = O(1) (10)

In Eq. (13.10), P1/2 is the contribution to Lc(N) from the last M(N) =
√
N tosses of a total of N tosses of a

coin. We shall consider the value of P1/2 as the benchmark with which to compare the contributions of the last

M(N) =
√
N terms of the summatory Liouville function.

Now coming back to the λ-sequence as depicted in the summation terms in Eq. (13.1), following Littlewood
(1912) we shall suppose that the expression given in (13.2) is an ansatz‖ depicting the behavior of L(N) for
large N .

The task that we then set ourselves, is to estimate the value of the exponent a in the asymptotic behavior
described in (13.2) |L(N)| = C Na which involves the λ−sequence. We do know that the λ-sequence does not all
behave like coin tosses, but we have shown that there exist subsequences of λ’s that exhibit a close correspondence
to the statistical distribution of coin tosses and though such subsequences are of relatively short lengths M(N),
there are very many in number. Now a ‘True’ value of the exponent ‘a’ should be able to capture the correct
statistics in all such subsequences and predict the behavior of coin tosses for such subsequences. We now
investigate if such a True value for a exists and, if so, what its value should be.

We will estimate the contribution to L(N) for the same subsequence (5) of length M(N) =
√
N , then the

P when recomputed with an exponent a 6= 1/2 would give Pa:

Pa =

N∑
n=N−

√
N+1

λ(n) (13.5′)

That is
Pa = L(N)− L(N −

√
N)

= CNa − C(N −
√
N)a (11)

Simplifying by using Binomial expansion we have:

Pa = CaNa− 1
2 − C a(a− 1)

1.2
Na−1 (12)

‖Eq. (13.2) can be thought of as the first term in the asymptotic expansion of L(N) for large N i.e. |L(N)| = Na(C + C1
N

+ C2
N2 + ...)
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From the properties of the λ’s deduced from earlier results in this paper (Theorem 3, Appendices 3,4 and
Theorem A5, page 21), we now know that in actuality the particular subsequence in Eq.(13.5) and Eq.(13.5′)
contain random values of +1 and −1 and since the subsequence of λ’s have the same statistics as those of coin
tosses, Pa must be similar to P1/2. Thus from (13.10) and (13.12)

Pa = O(1). (13)

From (13.11) this means that

CaNa− 1
2 = O(1) (14)

Since N is arbitrary and very large, this is impossible unless the condition

a =
1

2
(15)

strictly holds.∗∗

Hence we have proved a = 1/2. Since for consistency†† , condition (15), which arises from (13), is mandatory
and therefore |L(N)| ∼

√
N describes the asymptotic behavior of the summatory Liouville function. �

13 APPENDIX VI

On Coin Tosses and the Proof of Riemann Hypothesis

This Appendix has been written in such a manner that it can be read as a supplement to the
main paper and the first five appendices.

In the main part of this paper and the forgoing appendices, which we denote as: [MP and A’s], we
had proved the validity of the Riemann Hypothesis (RH). In this Appendix (VI), we perform a numerical
analysis and provide supporting empirical evidence that is consistent with the formal theorems that were key to
establishing the correctness of the RH. In particular, the numerical results of the statistical tests performed here
are firmly consistent with the proposition (formally proved in the paper cited above) that the values taken on
by the Liouville function over large sequences of consecutive integers are random. By performing this exhaustive
numerical analysis and statistical study we feel that we have provided a clearer understanding of the Riemann
Hypothesis and its proof.

1. Introduction

The Riemann zeta function, ζ(s), is defined by

ζ(s) =

∞∑
n=1

1

ns
, (1)

where n is a positive integer and s is a complex variable, with the series being convergent for Re(s) > 1. This
function has zeros (referred to as the trivial zeros) at the negative even integers −2,−4, . . .. It has been shown‡‡

that there are an infinite number of non-trivial zeros on the critical line at Re(s) = 1/2. Riemann’s Hypothesis
(RH), which has long remained unproven, claims that all the nontrivial zeros of the zeta function lie on the
critical line. The main paper contains the proof [MP and A’s]

In this technical note, we provide a more concrete understanding and appreciation of the steps involved
in the proof of the Riemann Hypothesis by supplying supporting empirical evidence for those various theorems
which were proved and which had played a key role in the proof of the RH. In what follows we first give a brief
summary of how the RH was proved in [MP and A’s]. The proof followed the primary idea that if the zeta
function has zeros only the critical line, then the function F (s) ≡ ζ(2s)/ζ(s) cannot be analytically continued
to the left from the region Re(s) > 1, where it is analytic, to the left of Re(s) < 1/2. This point was recognized
by Littlewood as far back as 1912.∗ The function F (s) can be expressed as (see Titchmarsh (1951, Ch. 1)):

∗∗In the above we tacitly assumed that a > 1/2, but a < 1/2 is not possible because then Pa will become zero. This implies that
dL/dN = 0, meaning |L(N)| will be a constant. But this again is impossible from Theorem 1, which would imply that F (s) can be
analytically continued to Re(s) = 0—an impossibility because of the presence of an infinity of zeros at Re(s) = 1/2, first discovered
by Hardy.
††It may be noted that for every (large) N there is a set SN , Eq (13.4), containing M =

√
N consecutive integers whose λ-values

behave like coin tosses; but there are an infinite number of integers N and therefore there are an infinite number of sets SN , for
which (13) must be satisfied.
‡‡This was first proved by Hardy (1914).
∗It may be noted that Littlewood studied the function 1/ζ(s) whereas we, in our analysis study F (s) ≡ ζ(2s)/ζ(s). This has made
things simpler.
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F (s) =

∞∑
n=1

λ(n)

ns
, (2)

where λ(n) is the Liouville function defined by λ(n) = (−1)ω(n), with ω(n) being the total number of prime
numbers in the factorization of n, including the multiplicity of the primes. The proof of RH in [MP and A’s]
requires also the summatory Liouville function, L(N), which is defined as:

L(N) =

N∑
n=1

λ(n) (3)

The proof crucially depends on showing that the function F (s) = ζ(2s)/ζ(s), has poles only on the critical
line s = 1/2 + iσ, which translates to zeros of ζ(s), on the self same critical line s = 1/2 + iσ, because all the
values of s which appear as poles of F (s) are actually zeros of ζ(s), except for s = 1/2. Since, the trivial zeros
of ζ(s) which occur at s = −2,−4,−6.... that is negative even integers, conveniently cancel out from numerator
and denominator of the expression in F (s)), leaving only the non trivial zeros, also the pole of ζ(2s) will appear
as a pole of F (s), at s = 1/2. So it just remains to show that all the poles of F (s) lie on the critical line. This
was the Primary task of the paper.

The crucial condition then is that F (s) is not continuable to the left of Re(s) < 1/2, and therefore that
the zeta function have zeros only on the critical line,† is that the asymptotic limit of the summatory Liouville
function be |L(N)| ∼ C N1/2, where C is a constant. Therefore, to provide a rigorous proof of the validity
of the Riemann Hypothesis, [MP and A’s] investigated the asymptotic limit of L(N). The work involved the
establishment of several relevant theorems, which were then invoked to eventually prove the RH to be correct.

We now state some of these important theorems‡).
Theorem 1:
In the set of all positive integers, for every integer which has an even number of primes in its factorization

there is another unique integer (its twin) which has an odd number of primes in its factorization.
Remark: Theorem 1 gives us the formal result that Pr(λ(n) = +1) = Pr(λ(n) = −1) = 1/2 , where Pr

denotes probability. That is, the λ-function behaves like an ‘ideal coin’.

Theorem 2:
Consider the sequence S−(N) comprising µ(N) consecutive positive integers, defined by

S−(N) = {N − µ(N) + 1, N − µ(N) + 2, N − µ(N) + 3, ..., N}, where µ(N) =
√
N . Then every number in

S−(N) will differ in its prime factorization from that of every other number in S−(N) by at least one distinct
prime.§

Remark: It is not hard to prove that the sequence S+(N) ≡ {N + 1, N + 2, N + 3, ........, N + µ(N)} of
length µ(N) also behaves similarly. That is, every member of S+(N) differs from every other member by at least
one prime in its factorization. This implies, interestingly, that by choosing N to be consecutive perfect squares,
the entire set of positive integers can be envisaged as a union of mutually exclusive sequences like S−(N) and
S+(N).

It follows that the λ-values in the sequences Sλ−(N) ≡ {λ(N − µ(N) + 1), λ(N − µ(N) + 2), ..., λ(N)} and
Sλ+(N) ≡ {λ(N + 1), λ(N + 2), λ(N + 3), ..., λ(N + µ(N))}, in which each member has a value either +1 or −1,
would also appear randomly and be statistically similar to sequences of coin tosses.

Since the number of members in the sequences S−(N), Sλ−(N), Sλ+(N), and Sλ+(N) is given by µ(N) =√
N →∞ as N →∞, the behavior of the λ-values of very large integers should coincide with that of a sequence

of coin tosses. This intuition was formally confirmed in Appendix V .
Theorem 3:
The summatory Liouville function takes the asymptotic form |L(N)| = C N1/2,C is a constant. It can

be shown that C =
√

2
π . It may be mentioned here that Littlewood’s condition is fairly tolerant: As long as

asymptotically, for large N , |L(N)| = C N1/2, and C is any finite constant, R.H. follows. This ‘tolerance’ is
reflected in the value of χ2 (below) as may be deduced, after a study of the following.

Remark: The form of the summatory Liouville function in Theorem 3 is precisely what we would expect for
a sequence of unbiased coin tosses. This, along with a sufficient condition derived by Littlewood (1912), shows

†Riemann had already shown that symmetry conditions ensure that there will be no zeros 0 < Re(s) < 1/2 if it is found that there
are no zeros in the region 1/2 < Re(s) < 1
‡In addition to the theorems given below, a necessary theorem which states that: The sequence λ(1), λ(2), λ(3), ..., λ(n), ..., is
asymptotically non-cyclic, (i.e. it will never repeat), was also proved, in [MP and A’s], the theorems are numbered differently
§For example, if two numbers c and d in S are factorized as c = pe11 pe22 and d = pe33 pe44 then at least one of the primes p3 or p4 will
be different from p1 or p2.
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that F (s) is analytic for Re(s) > 1/2 and Re(s) < 1/2, thereby leaving the only possibility that the non-trivial
zeros of ζ(s) can occur only on the critical line Re(s) = 1/2.

In the following sections, by comparing the λ-sequences obtained for large sets of consecutive integers with
(binomial) sequences of coin tosses, we show that the statistical distributions of the two sets of sequences are
consistent with the claims of the above theorems. To this end, we apply Pearson’s ‘Goodness of Fit’ χ2 test.
The software program Mathematica developed by Wolfram has been used in this technical report to aid in the
prime factorization of the large numbers that this exercise entails.

The compelling bottom line that emerges from this empirical study is that it is extremely unlikely, in fact
statistically impossible, that for large N , the sequences of λ-values can differ from sequences of coin tosses. It is
this behavior of the Liouville function, recall, that delivers Theorem 3 above. And this Theorem, in turn, nails
down all the non-trivial zeros of the zeta function to the critical line [MP and A’s].

2. χ2 Fit of a λ-Sequence

In this section we will derive an expression of how closely a λ sequence corresponds to a binomial sequence
(coin tosses). We follow the exposition given in Knuth (1968, Vol. 2, Ch. 3); and then derive a very important
expression for a χ2 fit of a λ-Sequence, given by Eq.(14.9) below.

Suppose we are given a sequence, T (N0, N), of N consecutive integers starting from N0:
T (N0, N) = {N0, N0 + 1, N0 + 2, N0 + 3, ......., N0 +N − 1}

and the sequence, Λ(N0, N), of the corresponding λ-values:
Λ(N0, N) = {λ(N0), λ(N0 + 1), λ(N0 + 2), λ(N0 + 3), .. , λ(N0 +N − 1)}.
We ask how close in a statistical sense the sequence Λ(N0, N) is to a sequence of coin tosses or, in other

words, a binomial sequence. By identifying λ(n) = 1 as Head and λ(n) = −1 as Tail, for the nth ‘toss’, we
may perform this comparison. If this is really the case then statistically Λ(N0, N) should resemble a binomial
distribution, we can then compute the χ2 statistic as follows.

χ2(N) =
(P − EP )2

EP
+

(M − EM )2

EM
, (4)

where P and M are the actual number of +1s (Heads) and −1s (Tails), respectively, in the Λ(N0, N) sequence,
EP and EM are the expectations of the number of +1s and −1s in the probabilistic sense. From Theorem 1 it
immediately follows that, for large N ,

EP = EM = N/2. (5)

We define L(N0, N) as the additional contribution to the summatory Liouville function of N consecutive
integers starting from N0:

L(N0, N) =

N0+N−1∑
n=N0

λ(n). (6)

For brevity we will denote L̂ ≡ L(N0, N) and since (6) contains P terms which are equal to +1s and M
terms which are equal to −1s, we can write:

P −M = L̂, (7)

and

P +M = N. (8)

Using (7)and (8) we see that P = (N + L̂)/2 and M = (N − L̂)/2 and from (5) we deduce P − EP = L̂/2

and M − EM = −L̂/2 and thus equation (4) gives us the very important χ2 relation which is satisfied by every
Λ(N0, N) sequence involving the factorization of N consecutive integers starting from N0:

χ2(N) =
[L(N0, N)]2

N
. (9)

Note that the it was possible to derive an expression for χ2 for largeN only because of Theorems 1, 2, and
3. Now we particularly choose N to be the square of an integer and the sequence of length µ(N) =

√
N starting

from the integer N0 = N −
√
N + 1 and then taking the

√
N consecutive terms of the λ-sequence, we obtain

Λ(N0,
√
N) = {λ(N −

√
N + 1), λ(N −

√
N + 2), λ(N −

√
N + 3), ..., λ(N) }, (10)
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and the corresponding χ2(
√
N) for such a sequence (which is of length

√
N) can be obtained from Theorem 3

and (9) as

χ2(
√
N) =

[C
√√

N ]2√
N

= C2. (11)

Equation (11) of course, should be interpreted as the average value of a sequence such as Λ(N0,
√
N) of

length
√
N given in the expression (10). In this report we perform the χ2 ‘Goodness of Fit’ tests for very

many sequences of the type Λ(N0,
√
N) with varying lengths and very large values of N to examine whether

these sequences are statistically indistinguishable from coin tosses. In this manner, we provide empirical support
for the claims of the theorems formally proved in [MP and A’s] and, therefore, for the proof of the Riemann
Hypothesis.

3. Numerical Analysis of Sequence Λ(N0,
√
N) and its χ2 Fit

In this section, we consider sequences of length
√
N , starting from N0 = N −

√
N + 1 or N + 1 where N

is a perfect square. We use Mathematica to compute L(N0, N).¶

In the table below we list the sequences in the following format. We define the sequences:

S−(N) = {N −
√
N + 1, N −

√
N + 2, ..., N}, (12)

S+(N) = {N + 1, N + 2, ..., N +
√
N}, (13)

and the partial sums of the λs of the two sequences defined above are defined by the expressions:

L(S−) ≡ L(N −
√
N + 1, N) = λ(N −

√
N + 1) + λ(N −

√
N + 2) + ...+ λ(N), (14)

L(S+) ≡ L(N + 1, N +
√
N) = λ(N + 1) + λ(N + 2) + ...+ λ(N +

√
N). (15)

The formal proof of the Riemann Hypothesis in [MP and A’s] proceeded as follows. The sequences
Λ(N −

√
N + 1,

√
N) and Λ(N + 1,

√
N) were shown to behave like coin tosses for every N (large) over sequences

of length
√
N , where N is taken to be a perfect square. On taking N to be consecutive perfect squares, the

lengths of the consecutive sequences naturally increase. Using this procedure, we obtain sequences that can span
the entire set of positive integers (consult the first five columns of Tables 1.1 to 1.4). Since the λs within each
segment behave like coin tosses, from the work of Chandrashekar (1943) it follows that the summatory Liouville
function L(N) must behave like C

√
N as N →∞. The validity of RH follows, by Littlewood’s Theorem, from

the fact that F (s) cannot then be continued to the left of the critical line Re(s) = 1/2 because of the appearance
of poles in F (s) on the line, each pole corresponding to a zero of the zeta function ζ(s).

Statistical Tests
We shall now test the following null hypothesis H0 against the alternative hypothesis H1 in the following

generic forms:
H0: The sequence Λ(N0, N) has the same statistical distribution as a corresponding sequence of coin tosses

(i.e. binomial distribution with Prob(H) = Prob(T ) = 1/2).
H1: The sequence Λ(N0, N) has a different statistical distribution than a corresponding sequence of coin

tosses (i.e. binomial distribution with Prob(H) = Prob(T ) = 1/2).
The critical value for chi square is χ2

crit = 3.84, for the standard 0.05 level of significance. (In our case,
the relevant degrees of freedom equal to 1.) Assuming that H0 is true, if chi square is less than χ2

crit the null
hypothesis is accepted.

It should be noted that the tests conducted here are not merely exploratory statistical exercises to discern
possible patterns in the λ-sequences. Rather, the tests here are informed by theory. We have formally shown in
[MP and A’s] that, over the set of positive integers, the probability that λ takes on the value +1 or −1 with

¶A typical Mathematica command which calculates the expression
∑K
n=J λ(n) is:

Plus[LiouvilleLambda[Range[J,K]]].For instance, the command which sums
the λ(n) from n = 25, 000, 001 to 25, 005, 000 is:
Plus[LiouvilleLambda[Range[25000001, 25005000]]], which will give the answer = −42.



26 K. Eswaran

equal probability and that, over sequences that are increasing in N , the λ draws are random. Thus statistical
evidence consistent with these claims merely bolster what has already been formally demonstrated.

The behavior of the Λ(N0,
√
N) sequences are verified to be indeed like coin tosses for a very large number

of cases and the results are summarized in the tables below. Let us take an example from Table 1.1. The third
row gives the χ2 result for the sequence of length 1001, starting from 1001001. We can factorize each of these
numbers as:

1001001 = 3 × 333667; 1001002 = 2 × 500501; 1001003 = prime;
1001004 = 22 × 3 × 83417;.........., 1001999 = 41 × 24439;
1002000 = 24 × 3 × 53 × . 167; 1002001 = 72 × 112 × 132

and hence we can evaluate the corresponding λ-sequence, by using the definition λ(n) = (−1)ω(n), with
ω(n) being the total number of prime numbers (multilpicities included) in the factorization of n. We find that:

Λ(1001001, 1001) = {λ(1001001), λ(1001002), ..., λ(1002000), λ(1002001)}
= {1, 1,−1, 1, 1, 1, 1,−1, 1,−1, 1, ................, 1,−1, 1}.
The partial sum of all the 1001 λs shown in the sequence above adds up to 49. We then estimate how close

the sequence Λ(1001001, 1001) is to a Binomial distribution, i.e. of 1001 consecutive coin tosses. The observed
value χ2 = 2.4 for this sequence of λs is well below the critical value χ2

crit = 3.84 (for a one degree of freedom)
at the standard significance level of 0.05. Thus the sequence Λ(1001001, 1001) is statistically indistinguishable
from a Binomial distribution obtained by 1001 consecutive coin tosses if we consider Head = +1 and Tail = −1.
In fact, it so happens that out of the 10 sequences shown in Table 1.1 this chosen example has the largest value
of χ2; the other sequences have a much lower χ2 value and the average value is 0.653 which hovers around the
predicted average C2 = 2

π = 0.637. We see that the null hypothesis would be accepted even if the significance
level were at 0.10, for which χ2

crit = 2.71.
We have calculated the χ2 for larger and larger sequences see Tables1.2, Tables 1.3 and Tables 1.4 for even

very large numbers ∼ 1010 and sequences involving 105consecutive integers in each case the sequences Λ(N0,
√
N)

behave like coin tosses thus lending emphatic empirical support consistent with the Theorems proved in [MP
and A’s],.

TABLE 1.1 Sequence of Consecutive Integers of Type S−(N) and S+(N) of Length 1000

No Type of S(N)
√
N From to L(S) χ2

1. S 1000 999,001 1,000,000 6 0.036
2. S+ 1000 1,000,001 1,001,000 10 0.100
3. S 1001 1,001,001 1,002,001 49 2.400
4. S+ 1001 1,002,002 1,003,002 -37 1.368
5. S 1002 1,003,003 1,004,004 -12 0.144
6. S+ 1002 1,004,005 1,005,006 -28 0.780
7. S 1003 1,005,007 1,006,009 3 0.009
8. S+ 1003 1,006,010 1,007,012 -39 1.516
9. S 1004 1,007,013 1,008,016 12 0.143
10. S+ 1004 1,008,017 1,009,020 6 0.036

MEAN χ2 FROM 999,001 1,009,020 = 0.653

TABLE 1.2 Sequence of Consecutive Integers of Type S−(N) and S+(N) of Length 5000

No Type of S(N)
√
N From to L(S) χ2

1. S 5000 24,995,001 25,000,000 0 0.0
2. S+ 5000 25,000,001 25,005,000 -42 0.353
3. S 5001 25,005,001 25,010,001 -27 0.148
4. S+ 5001 25,010,002 25,015,002 -103 2.12
5. S 5002 25,015,003 25,020,004 -76 1.155
6. S+ 5002 25,020,005 25,025,006 48 0.461
7. S 5003 25,025,007 25,030,009 -13 0.034
8. S+ 5003 25,030,010 25,035,012 119 2.831
9. S 5004 25,035,013 25,040,016 124 3.072
10. S+ 5004 25,040,017 25,045,020 62 0.768

MEAN χ2 FROM 24,995,001 25,045,020 = 1.094
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TABLE 1.3 Sequence of Consecutive Integers of Type S−(N) and S+(N) of Length 10,000

No Type
√
N From to L(S) χ2

1. S 10000 99,990,001 100,000,000 -146 2.132
2. S+ 10000 100,000,001 100,010,000 -88 0.774
3. S 10001 100,010,001 100,020,001 -11 0.012
4. S+ 10001 100,020,002 100,030,002 -43 0.185
5. S 10002 100,030,003 100,040,004 8 0.064
6. S+ 10002 100,040,005 100,050,006 36 0.130
7. S 10003 100,050,007 100,060,009 23 0.053
8. S+ 10003 100,060,010 100,070,012 -49 0.240
9. S 10004 100,070,013 100,080,016 -20 0.040
10. S+ 10004 100,080,017 100,090,020 112 1.254

MEAN χ2 FROM 99,990,001 TO 100,090,020 = 0.488

TABLE 1.4 Sequence of Consecutive Integers of Type S−(N) and S+(N) of Length 100,000

No Type
√
N From to L(S) χ2

1. S 100,000 9,999,900,001 10,000,000,000 -232 0.538
2. S+ 100,000 10,000,000,001 10,000,100,000 340 1.15
3. S 100,001 10,000,100,001 10,000,200,001 -249 0.620
4. S+ 100,001 10,000,400,005 10,000,500,006 -115 0.132
5. S 100,002 10,000,300,003 10,000,400,004 216 0.467
6. S+ 100,002 10,000,400,005 10,000,500,006 456 2.08
7. S 100,003 10,000,500,007 10,000,600,009 -255 0.650
8. S+ 100,003 10,000,600,010 10,000,700,012 -235 0.552
9. S 100,004 10,000,700,013 10,000,800,016 -44 0.0194
10. S+ 100,004 10,000,800,017 10,000,900,020 202 0.408
11. S 100,005 10,000,900,021 10,001,000,025 -191 0.364
12. S+ 100,005 10,001,000,026 10,001,100,030 475 2.26
13. S 100,006 10,001,100,031 10,001,200,036 134 0.179
14. S+ 100,006 10,001,200,037 10,001,300,042 -66 0.0436
15. S 100,007 10,001,300,043 10,001,400,049 427 1.82
16. S+ 100,007 10,001,400,050 10,001,500,056 -303 0.918
17. S 100,008 10,001,500,057 10,001,600,064 276 0.762
18. S+ 100,008 10,001,600,065 10,001,700,072 -210 0.441
19. S 100,009 10,001,700,073 10,001,800,081 267 0.713
20. S+ 100,009 10,001,800,082 10,001,900,090 291 0.847

MEAN χ2 FROM 9,999,900,001 TO 10,001,900,090 = 0.768

3.1 Sequences of Fixed Length Arbitrarily Positioned

In this section we consider various segments of consecutive integers of a fixed length but starting from an
arbitrary integer. Even here we see that the λs within each segment behave like coin tosses and have the same
statistical properties.

We now calculate the χ2 values of λ-sequences for a sequence SA of consecutive integers, starting from an
arbitrary number N0 but all of a fixed length M :

SA(N) = {N0, N0 + 1, N + 2, N + 3, ..., N0 +M − 1} (16)

and
L(SA) = λ(N0) + λ(N0 + 1) + λ(N0 + 2) + λ(N0 + 3) + ...+ λ(N0 +M − 1) (17)

The results, which are summarized in Table 2.1, again show that the λ-sequences are statistically like coin tosses.
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TABLE 2.1 Sequence of Consecutive Integers of Type SA(N) and of Length M = 1000

No Type M From N0 to N0 +M − 1 L(SA) χ2

1. SA 1000 10,000,001 10,001,000 36 1.296
2. SA 1000 12,000,001 12,001,000 28 0.784
3. SA 1000 13.000,001 13,001,000 -14 0.196
4. SA 1000 15,000,001 15,001,000 10 0.10
5. SA 1000 45,000,001 45,001,000 -18 0.324
6. SA 1000 47,000,001 47,001,000 -36 1.296
7. SA 1000 56,000,001 56,001,000 24 0.576
8. SA 1000 70,000,001 70,001,000 -44 1.936
9. SA 1000 90,000,001 90,001,000 14 0.196
10. SA 1000 95,600,001 95,601,000 28 0.784
11. SA 1000 147,000,001 147,001,000 -26 0.676
12. SA 1000 237,000,001 237,001,000 -24 0.576
13. SA 1000 400,000,001 400,001,000 26 0.676
14. SA 1000 413,000,001 413,001,000 10 0.10
15. SA 1000 517,000,001 517,001,000 14 0.196
16. SA 1000 530,000,001 530,001,000 -32 1.024
17. SA 1000 731.000,001 731,001,000 50 2.500
18. SA 1000 871,000,001 871,001,000 -42 1.764
19. SA 1000 979,000,001 979,001,000 -20 0.400
20. SA 1000 997,000,001 997,001,000 14 0.196

MEAN χ2 OF ABOVE 20 SEGMENTS = 0.780

3.2 Entire Sequences from n = 1 to n = N , N large and calculation of χ2 for
such sequences from L(N)

It has been empirically verified in the literature that the summatory Liouville Function L(N) =
∑N

n=1 λ(n)
fluctuates from positive to negative values as N increases without bound. We now investigate the χ2 values for
such sequences,and use Eq.(9), so that we may see how these sequences behave like coin tosses.

In the Table 3.1 we use the values of L(N) for various large values of N , which were found by Tanaka
(1980), the results depicted below reveal that the lambda sequences are statistically indistinguishable from the
sequences of coin tosses over such large ranges of N from 1 to one billion.

In the above we calculated L(N) for various valies of N , however, if we choose a value N at which L(N) is
a local maximum or a local minimum then we would be examining potential worst case scenarios for deviations
of the λs from coin tosses because these are the values of N that are likely to yield the highest values of χ2 (see
equation (9)). It is interesting to investigate if even for these special values of N whether the χ2 is less than the
critical value; if so, we would again have statistical assurance that the entire sequence of λs from n = 1, 2, 3, ...
behave like coin tosses.

We therefore use the 58 largest values of L(N) and the associated values of N reported in the literature
by Borwein, Ferguson and Mossinghoff (2008), and perform our statistical exercise. See Table 3.2. We see that
even for these “worst case scenario” values of N the lambda sequences are statistically indistinguishable from
the sequences of coin tosses.
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TABLE 3.1 Values of L(N) at various large values of N
(The values for N and L(N) are from Tanaka (1980))

No. N L(N) =
∑N

n=1 λ(n) χ2

1 100,000,000 -3884 0.1508
2 200,000,000 -11126 0.6189
3 300,000,000 -16648 0.9238
4 400,000,000 -11200 0.3136
5 500,000,000 -18804 0.7072
6 600,000,000 -15350 0.3927
7 700,000,000 -25384 0.9204
8 800,000,000 -19292 0.4652
9 900,000,000 -4630 0.0238
10 1,000,000,000 -25216 0.6358

MEAN χ2 OF ABOVE = 0.5152

TABLE 3.2 Values of L(N) at local Minima (Maxima) for very Large N
(The values for N and L(N) are from Borwein, Ferguson and Mossinghoff (2008))

No. N L(N) =
∑N

n=1 λ(n) χ2

1 293 -21 1.5051
2 468 -24 1.2308
3 684 -28 1.1462
4 1,132 -42 1.5583
5 1,760 -48 1.3091
6 2,804 -66 1.5535
7 4,528 -74 1.2094
8 7,027 -103 1.5097
9 9,840 -128 1.665
10 24,426 -186 1.4164
11 59,577 -307 1.582
12 96,862 -414 1.7695
13 386,434 -698 1.2608
14 614,155 -991 1.5991
15 925,985 -1,253 1.6955
16 2,110,931 -1,803 1.54
17 3,456,120 -2,254 1.47
18 5,306,119 -2,931 1.619
19 5,384,780 -2,932 1.5965
20 8,803,471 -3,461 1.3607
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TABLE 3.2 (Cont’d) Values of L(N) at local Minima (Maxima)

No. N L(N) =
∑N

n=1 λ(n) χ2

21 12,897,104 -4,878 1.845
22 76,015,169 -10,443 1.4347
23 184,699,341 -17,847 1.7245
24 281,876,941 -19,647 1.3694
25 456,877,629 -28,531 1.7817
26 712,638,284 -29,736 1.2408
27 1,122,289,008 -43,080 1.6537
28 1,806,141,032 -50,356 1.4039
29 2,719,280,841 -62,567 1.4396
30 3,847,002,655 -68,681 1.2262
31 4,430,947,670 -73436 1.2171
32 6,321,603,934 -96,460 1.4719
33 10,097,286,319 -123,643 1.514
34 15,511,912,966 -158,636 1.6223
35 24,395,556,935 -172,987 1.2266
36 39,769,975,545 -238,673 1.4324
37 98,220,859,787 -365,305 1.3586
38 149,093,624,694 -461,684 1.4296
39 217,295,584,371 -598,109 1.6463
40 341,058,604,701 -726,209 1.5463
41 576,863,787,872 -900,668 1.4062
42 835,018,639,060 -1,038,386 1.2913
43 1,342,121,202,207 -1,369,777 1.398
44 2,057,920,042,277 -1,767,635 1.5183
45 2,147,203,463,859 -1,784,793 1.4836
46 3,271,541,048,420 -2,206,930 1.4888
47 4,686,763,744,950 -2,259,182 1.089
48 5,191,024,637,118 -2,775,466 1.4839
49 7,934,523,825,335 -3,003,875 1.1372
50 8,196,557,476,890 -3,458,310 1.4591
51 12,078,577,080,679 -4,122,117 1.4068
52 18,790,887,277,234 -4,752,656 1.2021
53 20,999,693,845,505 -5,400,411 1.3888
54 29,254,665,607,331 -6,870,529 1.6136
55 48,136,689,451,475 -7,816,269 1.2692
56 72,204,113,780,255 -11,805,117 1.9301
57 117,374,745,179,544 -14,496,306 1.7904
58 176,064,978,093,269 -17,555,181 1.7504

The empirical evidence provided here is very comprehensive: it examines the statistical behavior of the
Liouville function for large segments of consecutive integers (e.g.Table 1.4). We have also considered the
entire series of λ(n) from the values of n = 1 to n = N = 176 trillion - as high as any available studies in
the literature have gone. And yet, the λ−sequences consistently show themselves, in rigorous statistical tests, to
be indistinguishable from sequences of coin tosses, hence providing overwhelming statistical evidence in support
of Littlewood’s condition that as N →∞, L(N) = C.

√
(N), (where C is finite) and thus declaring that the

non-trivial zeros of the zeta function, ζ(s), must all necessarily lie on the critical line Re(s) = 1/2.

4. Concluding Note
In this Appendix VI we have provided compelling, comprehensive numerical and statistical evidence that

is consistent with the Theorems that were instrumental in the formal validation of the Riemann Hypothesis in
[MP and A’s].

It is hoped that a perusal of this section (Appendix 6)report offers some insight into, and understanding of,
why the Riemann Hypothesis is correct. It should be noted that, while the results presented here are perfectly
consistent with the theoretical results in [MP and A’s], they obviously do not prove (in a strict mathematical
sense, because of the statistical nature of the study), the Riemann Hypothesis. For the formal proof, the rigorous
mathematical analysis in the main paper needs to be consulted.
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